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Abstract Data mining is most commonly used in

attempts to induce association rules from databases which

can help decision-makers easily analyze the data and make

good decisions regarding the domains concerned. Different

studies have proposed methods for mining association rules

from databases with crisp values. However, the data in

many real-world applications have a certain degree of

imprecision. In this paper we address this problem, and

propose a new data-mining algorithm for extracting inter-

esting knowledge from databases with imprecise data. The

proposed algorithm integrates imprecise data concepts and

the fuzzy apriori mining algorithm to find interesting fuzzy

association rules in given databases. Experiments for

diagnosing dyslexia in early childhood were made to verify

the performance of the proposed algorithm.

Keywords Data mining � Fuzzy association rules �
Low-quality data

1 Introduction

Data mining (DM) is the process used for the automatic

discovery of high-level knowledge from real-world, large

and complex datasets. The use of DM to facilitate decision

support can lead to improved performance in decision-

making and can enable the tackling of new types of

problems that have not been addressed before (Mladenic

et al. 2002).

Discovering association rules is one of several data-

mining techniques described in the literature (Han and

Kamber 2006). Association rules are used to represent

and identify dependencies between items in a database

(Zhang and Zhang 2002). An association rule is an

expression X ! Y ; where X and Y are sets of items and

X \ Y ¼ ø: It means that if all the items in X exist in a

transaction then all the items in Y are also in the trans-

action with a high probability, and X and Y should not

have a common item (Agrawal et al. 1993; Agrawal and

Srikant 1994).

Research in this field has mainly concentrated on

boolean and quantitative association rules (Agrawal and

Srikant 1994; Alatas and Akin 2006; Alcala-Fdez et al.

2010; Han et al. 2004; Sun and Fengshan 2008). However,

in recent years many researchers have proposed methods to

mine fuzzy association rules from quantitative data in order

to solve some of the problems introduced by quantitative

attributes (Chen et al. 2011; Hong et al. 2001; Hong and

Lee 2008; Kaya 2006). The use of fuzzy sets to describe

associations between data extends the type of relationships

that may be represented, facilitates the interpretation of

rules in linguistic terms, and avoids unnatural boundaries in

the partitioning of attribute domains (Delgado et al. 2003;

Dubois et al. 2005, 2006; Hullermeier and Yi 2007;

Sudkamp 2005).
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Various studies have proposed methods for mining

association rules that have been focused on databases with

crisp values, however the data in many real-world appli-

cations have a certain degree of imprecision (e.g., interval

or fuzzy values). Sometimes, this imprecision is small

enough to be safely ignored. On other occasions, the

uncertainty of the data can be modeled by a probability

distribution. However, there are other problems where the

imprecision is significant and a probability distribution is

not a natural model (Baudrit et al. 2008). Designing DM

algorithms able to deal with the uncertainty of the data and

exploit better the information contained in low-quality sets

of data (LQD) presents a challenge to workers in this

research field (Palacios et al. 2011; Villar et al. 2009).

Fuzzy statistic considers the use of fuzzy sets to

represent imprecise knowledge about the data (Bertoluzza

et al. 2003; Wu and Sun 2001). Recent works in fuzzy

statistic suggest using a fuzzy representation when the data

are known through a family of confidence intervals (Couso

and Sanchez 2008), using a possibilistic representation to

model these kinds of data (Sanchez et al. 2007, 2009).

This representation assumes that a fuzzy set can be iden-

tified as a nested family of sets where each one of them

contains the true value of the object with a probability

greater than or equal to a certain bound (Couso and

Sanchez 2008).

In this paper, we integrate LQD concepts with the fuzzy

apriori mining algorithm proposed by Hong et al. (2001) in

order to obtain high-quality fuzzy association rules from

databases with LQD. We extend this algorithm considering

a possibilistic representation to model the input data with

inaccurate values, transforming each input value into

a fuzzy set. Let us consider a set of linguistic terms L;

L ¼ fl1; . . .; lng; associated with a Ruspini (1969) fuzzy

partition. According to Sanchez et al. (2008), an inaccurate

input will be represented as a fuzzy subset of L, where the

discrete probability distribution is generalized to an

imprecise probability distribution and, where this imprecise

probability distribution can also be interpreted as a possi-

bility distribution (Dubois and Prade 1992). Let us illus-

trate this with a example. A crisp value, temperature of 45

grade, could be represented with the fuzzy subset

f0:0=Coldþ 0:2=Warmþ 0:8=Hotg where the sum of the

memberships of a crisp measurement is 1. Nonetheless,

an imprecise or vague measurement of the temperature

could be represented by the fuzzy subset f0:1=Coldþ
½0:2; 0:4�=Warmþ 0:9=Hotg and a missing value by the set

f1:0=Coldþ 1:0=Warmþ 1:0=Hotg; where the sum of the

memberships of an inaccurate value can be greater or lower

than 1. On the other hand, the confidence value of an

association rule will be defined by an interval of proba-

bilities, which will determine the probability that an asso-

ciation rule provides a high level of knowledge.

We will also present an experimental study to show the

behavior of the proposed approach using a low-quality set

of data for the diagnosis of dyslexia in early childhood,

named Inexpert-57 (see Sect. 6.1). First, we will revise the

fuzzy association rules obtained with our approach via

support and confidence. Then, we will analyze the level of

knowledge of the fuzzy association rule obtained by our

proposal from the dataset Inexpert-57. Finally, a study of

complexity and scalability of the proposal approach will be

shown.

This paper is organized as follows. The next section

describes the fuzzy mining algorithm proposed by Hong

et al. to mine association rules from datasets with quanti-

tative values. Section 3 introduces LQD, highlight their

representation and interpretation. Section 4 details the

fuzzy data-mining algorithm proposed to obtain fuzzy

association rules from low-quality datasets. An example is

given to illustrate the proposed algorithm in Sect. 5.

Section 6 shows the results obtained by our proposal over a

real-world dataset. Finally, in Sect. 7 some concluding

remarks are made.

2 Fuzzy data-mining algorithm for quantitative values

The goal of the fuzzy data-mining algorithm presented by

Hong et al. (2001) is to find interesting itemsets and fuzzy

association rules in databases with quantitative values,

discovering interesting patterns among them.

This method consists of transforming each quantitative

value into a fuzzy set of linguistic terms using membership

functions, which assumes that the membership functions

are known in advance. The algorithm then calculates the

scalar cardinality of each linguistic term in all the instances

as the count value and checks whether the count of each

linguistic term is larger than or equal to the minimum

support value to put these items in the large itemsets Lr.

The mining process, based on fuzzy counts, considers that

the intersection between the membership value of each

item is the minimum operator. Finally, this method obtains

the fuzzy association rules by the criterion used in the

apriori algorithm (Agrawal and Srikant 1994).

Hong et al. (1999) proposed a mining approach that

integrated fuzzy-sets concepts with the apriori algorithm to

find interesting itemsets and fuzzy association rules in the

instances with quantitative values. Although this approach

could quickly find interesting patterns, some patterns might

be missed since only the linguistic term with the maximum

cardinality in each item is used in the mining process.

In Hong et al. (2001), all the important linguistic terms

in the mining process are considered, generating a more

complete set of rules than the method proposed in Hong

et al. (1999), although its computation time increases.
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Hong et al. determine that there is a trade-off between the

computation time and the completeness of rules. Choosing

an appropriate learning method thus depends on the

requirements of the application domains.

3 Low-quality data: representation and interpretation

The Ruspini (1969) fuzzy partition can be understood as a

set of conditional probabilities; thus, the set of memberships

of an object to a Ruspini’s partition is a discrete probability

distribution over the linguistic labels. For instance, let us

assume an item with a finite domain of five linguistic labels

L ¼ fBad, Slow, Regulate, Normal, Goodg: In this case, a

crisp value could be represented with the fuzzy subset

f0:0=Badþ0:2=Slowþ0:8=Regulateþ0:0=Normalþ0:0=

Goodg; where the sum of the memberships of a crisp

measurement is 1. Nonetheless, the properties of one object

or measurement cannot be accurately observed; the discrete

probability distribution have to be generalized to an

imprecise probability distribution (Sanchez et al. 2008),

where the sum of the memberships of an inaccurate value

can be greater or lower than 1. In certain cases this impre-

cise probability distribution can also be interpreted as a

possibility distribution (Dubois and Prade 1992), where this

possibility distribution can be defined by a fuzzy member-

ship defined over the set of linguistic labels. For instance,

the fuzzy set f0:0=Coldþ½0:2;0:4�=Warnþ0:9=Hotg
means that the probability of the temperature being ‘Cold’

is 0, the probability of ‘Warm’ is not greater than 0.4 and is

not lower than 0.2 and the probability of ‘Hot’ is not greater

than 0.9, and its corresponding lower bound of probabil-

ity is: pðHotÞ�1�ðp�ðColdÞþp�ðWarmÞ¼ 0:6 (observe

that with this interpretation the set f½0:0;1:0�=Coldþ
½0:0;1:0�=Warmþ½0:0;1:0�Hotg represents the total

absence of knowledge about the input value).

In order to model the imprecision case, in this paper we

use a possibility representation which assumes that a fuzzy

set can be identified or represented as a possibility distri-

bution, i.e., a fuzzy set will be identified with the family of

all the probability distributions, where each a-cut of a

fuzzy feature is a random set that contains the unknown

crisp value of the feature with a probability greater or equal

than 1 - a-cut (Couso and Sanchez 2008) (see Fig. 1).

Thus, this possibilistic representation consists of under-

standing a fuzzy membership function as a nested family of

sets where each one contains the true value of the object

with a probability greater than or equal to a certain bound.

Notice that, this includes the interval and the crisp situa-

tions as particular cases.

These interpretations provide us a common framework

for reasoning with numbers, words, interval, fuzzy values,

missing values (one interval that spans the whole range of

the variable), left and right censored data (the value is

greater or lower than a cut-off value, or it is between a

couple of bounds), compound measures (each item com-

prises a disperse list of values) or different values of the

same attributes as described in Sanchez et al. (2009),

where these different concepts are embodied in the term

‘‘low quality data’’.

There are several kinds of representations of LQD, with

an interpretation based on a fuzzy statistic. In the next

sections we will introduce the representation of the LQD

used and the calculation of their membership value.

3.1 Representation of low-quality values

Real-world datasets are composed of groups of low-quality

items where each item describes one property of an object

but without observing the real value of the object in this

item. The representation and dominion of each low-quality

item can be defined by different kinds of inaccurate values:

Fig. 1 Fuzzy representation of vague data. Left a missing value is

codified with an interval that spans the whole range of the variable, or

Pð½min;max�Þ ¼ 1: Right a compound value (in this example, 5

different measurements of the variable) can be described by a fuzzy

membership, that can also be understood as an upper probability.

Each a-cut contains the true value of the variable with probability at

least 1 - a
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• An interval �X ¼ ½x1; x2� where x1 and x2 are included in

the domain of the item. For instance, an item with a

dominion between [0.0, 10.0] could be defined as �X =

[1.5, 3.6]; this implies that all our information is that ‘‘x

2 �X’’ or as a missing value �X = [0.0, 10.0].

• A fuzzy value eX ¼ ðx1; x2; x3Þ: For instance, an item

defined by three different values eX = (1.0, 1.3, 2.0).

• A fuzzy subset of a finite set of linguistic labels

associated with a Ruspini fuzzy partition (Sanchez

et al. 2008). For instance, f0:1=Badþ 0:3=Slowþ
0:9=Regulateg; where the sum of the memberships of

an inaccurate value can be [1.

• A fuzzy subset eX of a finite set of linguistic labels

where the membership of each partition will be defined

with the lower and upper membership. For the example

of the previous representation, the fuzzy set could

be defined as eX ¼ f½0:0; 0:1�=Badþ ½0:1; 0:3�=Slowþ
½0:7; 0:9�=Regulateg where this fuzzy representation is

interpreted as a possibility distribution.

3.2 Fuzzy membership with low-quality data

In this section we discuss how to compute the membership

function given a vague input. Let us suppose that we have a

crisp perception ‘‘x’’ of the properties of an object and a

fuzzy set eA with a finite set of linguistic labels, L ¼
fl1; . . .; lng; where ‘‘n’’ is the number of labels. The

membership function will be:

fuzzðxÞðliÞ ¼ PxðliÞ
X

n

i¼1

PxðliÞ ¼ 1:

�

�

�

�

�

ð1Þ

In accordance with the representation of the imprecise

inputs of the dataset and from the interpretation of LQD,

which assumes that a fuzzy set can be identified as a

possibility distribution, if the object is imprecise and all our

information about the input is that it is in the set �X

(‘‘x 2 �X’’), the membership function of this vague input in

the finite set of linguistic labels of L are not implicit. The

extension to set valued input is a set of membership

function as follows:

fuzzð �XÞðliÞ ¼ ffuzzðxÞðliÞjx 2 �Xg: ð2Þ

For instance, let us assume that the vague input is the

interval �X ¼ ½2:1; 3� and we want to calculate the mem-

bership function in the linguistic label ‘‘Low’’. We know

that the interval [2.1, 3] provides incomplete and imprecise

information about the real and unknown value ðx0Þ of the

measurement object. All the information that we have is

that x0 2 ½2:1; 3� and each a-cut of this vague input is a

random set that contains the unknown crisp value of the

Fig. 2 Set of bounds of probabilities for each linguistic term li 2 L with L ¼ fl1; . . .; lng

Table 1 Set of bounds of probabilities

Ins. Item.Low Item.Normal Item.High

1 [0, 1] [0, 1] 0

2 0 [0, 1] [0, 1]

3 0 [0, 1] [0, 1]

Count [0, 1] [0, 3] [0, 2]

Count(%) [0, 0.33] [0, 1] [0, 0.66]
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object with a probability greater or equal than 1 - a-cut).

In this case, the interval [2.1, 3], for any a-cut, has the

probability of 1 the contain the true real value x0 ðPðx0 2
½2:1; 3�Þ ¼ 1Þ: Therefore, fuzzy([2.1, 3])(Low) will be a set

of probabilities obtained from each value of x where x 2
[2.1, 3].

If the input is the imprecise value eX ; the membership

function will be a fuzzy set, according to the Extension

Principle which is compatible with the possibilistic inter-

pretation of fuzzy sets (Sanchez et al. 2009), computed as

follows:

fuzzð eXÞðliÞðtÞ ¼ supfajt ¼ fuzzðxÞðliÞ and x 2 ½ eX �ag:
ð3Þ

Observe that this fuzzy set fuzz ð eXÞðliÞ is associated

with the nested family of sets ffuzzð½ eX �aÞðliÞga2½0;1�:
If the input is a fuzzy subset of a finite set of linguistic

labels associated with a Ruspini fuzzy partition eX ¼
f½x1l; x2l�=ll; . . .; ½x1n; x2n�=lng; the upper (p�) and lower (p�)
bounds of probabilities are directly obtained from the

vague input. This means that, if we have a fuzzy set of

linguistic labels L ¼ fl1; . . .; lng; the item represented

by the fuzzy subset eX ¼ f½x1l; x2l�ll ; . . .; ½x1m; x2m�lmg; where

LE ¼ fll; . . .; lmg � L, is interpreted as a set of bounds of

probabilities for each linguistic label li; where li 2 LE:

Concretely: the lower ðp�Þ and upper ðp�Þ probabilities of li

are p�i ¼ x1i and p�i ¼ x2i; respectively. If the linguistic

label li 2 L is not contained in the subset of linguistic

labels LE then p�i and p�i are zero.

From the fuzzy subset eX ¼ fxl=ll; . . .; xm=lmg and

according to Sanchez et al. (2008) the corresponding lower

bound of each linguistic label is implicit from this fuzzy

subset (4):

p�i� 1� ðp�l þ � � � þ p�i�1 þ p�iþ1 þ � � � þ p�mÞ; li 2 LE:

ð4Þ

For instance, from the fuzzy set f0:0=Coldþ 0:2=Warmþ
0:9=Hotg; the lower bound of ‘Warm’ will be p�Warm� 1�
ðp�Cold þ p�HotÞ ¼ 0:1: As in the previous case, if the

linguistic label li 2 L is not contained in the subset of

linguistic labels LE then p�i and p�i are zero.

Figure 2 shows that the set of bounds of probabilities for

each linguistic label li; which composes the fuzzy set, are

obtained from the different representations of low-quality

inputs (½x1; x2�; f½x1; x2�=l1; . . .; ½x1m; x2m�=lmg and fx1=l1;

. . .; xm=lmg) which will compose the dataset ‘‘Inexpert-57’’.

3.3 Fuzzy data-mining algorithm and low-quality data

In this section, we describe in detail our fuzzy data-mining

algorithm to obtain fuzzy association rules from datasets

with LQD. We take the following variables as the param-

eters or inputs of this new proposal:

• A low-quality dataset eD that is composed of t instances,

where each one contains m attributes, and where eXi
j

represents the item j, 1� j�m; in the instance i,

1� i� t: This implies that the instance i of eD will be

formed by (5):

eDi ¼ f eXi
jgj¼1;...;m ð5Þ

• A set of membership functions S ¼ fL1; . . .; Lmg; where

m is the number of attributes and Lj represents the finite

set of linguistic labels which, in turn, are associated

with a Ruspini fuzzy partition Lj ¼ fl1; . . .; lng; where n

is the number of linguistic labels.

• A predefined minimum support value a.

• A predefined confidence value k.

• The number of cuts to obtain the possible real values.

• The number of times c that we sweep the probabilities

of each possible value obtained with the cuts.

The objective is obtain a set of fuzzy association rules

from LQD. To achieve this objective the steps are shown

below:

Step 1 Transform each item eXi
j ; with 1� j�m; of each

instance eDi; 1� i� t; into a fuzzy set interpreted as a set

of bounds of probabilities for each linguistic term of

LjðPi
j ¼ f½p�1; p�1�

i
l1
; . . .; ½p�n; p�n�

i
ln
gÞ:

Step 2 Calculate the frequency of occurrence of item j in

each linguistic term ‘‘k’’ of Lj; that is to say, Ljk where

‘‘k’’, 1� k� n; represents the partition k in the set

of linguistic terms of the item j, therefore Lj ¼
fl1; . . .; lk; . . .; lng and Ljk ¼ lk:

CountLjk
¼a

t

i¼1
P

i
jk
¼a

t

i¼1
½p�k; p�k �

i
lk

ð6Þ

where t represents the number of instances and a is the

fuzzy arithmetic-based sum (Kaufmann and Gupta 1991).

The percentage of CountLjk
will be defined as:

CountLjk
ð%Þ ¼ 1

t
a

t

i¼1
½p�k; p�k �

i
lk

ð7Þ

All Ljk are collected to form the candidate set Cr of

r-itemsets, where r represents the number of items kept in

the candidate set, initially r ¼ 1:

Cr ¼ f[fLjk ; 8kj1� k� ng; 8jj1� j�mg ð8Þ

Step 3 Check whether CountLjk
ð%Þ for all r-itemsets Ljk

of Cr (k = 1 to n for all j = 1 to m) is larger than or equal

to the predefined minimum support a: If CountLjk
ð%Þ

satisfies this condition then the set r-itemsets (Lr) will
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contain Ljk : As CountLjk
ð%Þ is defined by a set of bounds

of probabilities, this condition is satisfied if the upper

bounds (p�k) is larger than or equal to a.Lr; will be the

next set:

Lr ¼ fLjk j maxfCountLjk
ð%Þg� a;

Ljk 2 Crg ¼ fLjk j p�k � a; Ljk 2 Crg
ð9Þ

Notice that, we have considered the upper bounds (p�k) in

this condition because all possibly occurring itemsets are

considered. For instance, if an item is imprecise in all the

instances and we consider the option of the lower bounds

(p�k) then this item is not considered and never introduced

in Lr: Let us assume that an item is imprecise in all

instances of the dataset:

Item

1: f1=Lowþ 1=Normalg
2: f1=Normalþ 1=Highg
3: f1=Normalþ 1=Highg

The set of bounds of probabilities for each linguist term

in this item is shown in Table 1. Therefore, if we con-

sider the lower bounds (p�) then the information about

this item will be lost and the information provided will

be that not exist information about this item in the dataset

and as consequence this item would be determined as

irrelevant.

Step 4 If Lr is not null, then do the next step; otherwise,

exit the algorithm.

Step 5 Join the r-itemsets that compose Lr to generate the

new candidate set Crþ1: This set Crþ1 is obtained in a

similar way to the apriori algorithm (Agrawal and

Srikant 1994) except that two Ljk with the same attribute

j cannot simultaneously exist in an itemset in Crþ1

(Hong et al. 2001).

Step 6 For each (r ? 1)-itemset obtained in Crþ1; do the

following substeps:

a. Calculate the fuzzy value of each (r ? 1)-itemset

(s), of Crþ1; for each instance Di: The fuzzy value

will be a set of bounds of probabilities obtained from

each itemset that composes (r ? 1)-itemset:

P
i
s ¼ P

i
1

^

� � �
^

P
i
ðrþ1Þ: ð10Þ

The product t-norm generalizes the aggregation or

combination between the sets of probabilities of each

itemset of (r ? 1)-itemset.

P
i
s ¼ P

i
1

^

� � �
^

P
i
ðrþ1Þ ¼b

ðrþ1Þ
j¼1

P
i
j ð11Þ

b. Calculate the frequency of occurrence of each (r ? 1)-

itemset s as:

Counts ¼a
t

i¼1
P

i
s ð12Þ

The percentage of Counts will be defined as:

Countsð%Þ ¼
1

t
a

t

i¼1
P

i
s ð13Þ

c. If maxfCountsð%Þg; is larger than or equal to the

minimum support a then, put the (r ? 1)-itemset s

in Lrþ1:

Step 7 If Lðr þ 1Þ is null then continue with the next

steps; otherwise update the number of itemsets in the set

of candidates (r = r ? 1) and repeat the steps 5 and 6.

Step 8 Collect in R the itemsets of each Li; where

2� i�ðr þ 1Þ:
R ¼ fLi; 2� i�ðr þ 1Þg: ð14Þ

Step 9 Construct all the possible association rules (X ?
Y) from each large q-itemset s, q� 2; with items

(s1; s2; . . .; sq), of the set R (15):

s1 ^ � � � ^ sk�1 ^ skþ1 ^ � � � ^ sq

! sk; k ¼ 1; . . .; q:
ð15Þ

Step 10 Determine whether the association rules obtained

are relevant and provide interesting patterns or high-level

knowledge from LQD. Two substeps are required to

determine whether an association rule is relevant or not:

a. Calculate the confidence of the rule.

b. Compare the previous confidence with the prede-

fined confidence threshold k:

Let us suppose that we have a crisp dataset, Di; the

confidence of one association rule obtained from q-itemset

s of the set R; Confidence (X ? Y)ðPs1
;...;Psq Þ; will be defined

as:
Pt

i¼1 Pi
s

Pt
i¼1ðPi

s1
^ � � � ^ Pi

sk�1
^ Pi

skþ1
^ � � � ^ Pi

sq
Þ

¼ Counts

Countanteced

:

ð16Þ

If the inputs are imprecise, eDi; the confidence will be

defined by an interval value between [0, 1] that represents

the upper and lower bounds of this rule X ? Y (17):

ConfidenceðX ! YÞð �Ps1
;...; �Psq Þ

¼ fConfidenceðX ! YÞðxs1
;...;xsq Þj

Countanteced: [ 0; 8xsj
2 �Psj

g:

ð17Þ

The computational cost of ConfidenceðX ! YÞ is very

high and moreover, as the confidence value of a rule is
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defined by an interval-value that contains the real and

unknown exact value of the confidence, depending on the

values of xsj
; the rule could be relevant or not. So, if the

value of k is contained in this interval-value we do not

know whether or not the rule provides interesting

information. An approximation of such an interval-value

is defined in this proposal.

Let us consider a q-itemset s of the set R where the

association rule is s1 ^ � � � ^ sq�1 ! sq and where

Counts ¼ ½x1; x2� ¼ X and Countanteced: ¼ ½y1; y2� ¼ Y: In

order to determine the real value of X and Y some ‘‘cuts’’

are applied to obtain the possible real value of each

interval, Xcut ¼ ½x1; x2�cut ¼ xj where xj 2 X; so that each

cut (xj) is assigned a random probability (Pxj
) of being the

real value and, where the sum of all probabilities, of all

cuts, have to be 1:

PX ¼
X

cuts

c¼1

PXc
¼
X

cuts

c¼1

P½x1;x2�c ¼ 1 ð18Þ

PY ¼
X

cuts

c¼1

PYc
¼
X

cuts

c¼1

P½y1;y2�c ¼ 1 ð19Þ

where cuts indicates the number of possible real values that

are obtained from X and Y: The possible values of each set

of bounds of probabilities X and Y are:

VX ¼ fXc; c ¼ 1 to cutsg ð20Þ

VY ¼ fYc; c ¼ 1 to cutsg: ð21Þ

From a value of VYðyj 2 VYÞ and a value of the set VXðxj 2
VXÞ; the rule would be deemed relevant if:

xj� yj � k; xj� yj; yj [ 0 ð22Þ

The possible value xj could have a low probability of

being the real value. As a consequence, to determine if the

rule is relevant besides satisfying (22) the Pxj
� 0:5: Notice

that, for each value of the set VYðyj 2 VYÞ; all possible

values of the set VX have been considered and a new set

C ¼ fCyj
jyj 2 VYg is obtained from the probabilities that

determine whether one rule is relevant or not for each value

of the set VYðyj 2 YÞ:

Cyj
¼
X

cuts

i¼1

Pxi
� 0:5jxi� yj � k, xi� yj; yj [ 0: ð23Þ

For instance, let us suppose X ¼ ½0:4; 0:8� and Y ¼ ½0:4; 1�;
where cuts = 4 and k ¼ 0:6: This implies that:

VX ¼ fx1; x2; x3; x4g ¼ f0:4; 0:53; 0:66; 0:8g
VY ¼ fy1; y2; y3; y4gÞ ¼ f0:4; 0:6; 0:8; 1g

and the random probabilities obtained of being the possible

values are:

PX ¼ 0:15þ 0:58þ 0:2þ 0:07 ¼ 1

PY ¼ 0:01þ 0:28þ 0:4þ 0:31 ¼ 1

where, the set C will be:

C ¼ fCy1
;Cy2

;Cy3
;Cy4
g

where:

Cy1
¼ ð0:15Þ� 0:5j0:4� 0:4 � 0:6;

0:4� 0:4; 0:4 [ 0

Cy2
¼ ð0:15þ 0:58Þ� 0:5j

ð0:4� 0:6 � 0:6; 0:4� 0:6; 0:6 [ 0Þ
ð0:53� 0:6 � 0:6; 0:53� 0:6; 0:6 [ 0Þ

Cy3
¼ ð0:58þ 0:2þ 0:07Þ� 0:5j

ð0:4� 0:8 � 0:6; 0:4� 0:8; 0:8 [ 0Þ
ð0:53� 0:8 � 0:6; 0:53� 0:8; 0:8 [ 0Þ
ð0:66� 0:8 � 0:6; 0:66� 0:8; 0:8 [ 0Þ
ð0:8� 0:8 � 0:6; 0:8� 0:8; 0:8 [ 0Þ

Cy4
¼ ð0:2þ 0:07Þ� 0:5j

ð0:4� 1 � 0:6; 0:4� 1; 1 [ 0Þ
ð0:53� 1 � 0:6; 0:53� 1; 1 [ 0Þ
ð0:66� 1 � 0:6; 0:66� 1; 1 [ 0Þ
ð0:8� 1 � 0:6; 0:8� 1; 1 [ 0Þ

C ¼ f0:15; 0:73; 0:85; 0:27g:

This process is repeated c times in order to sweep the

possible probabilities of each possible value of VX: Thus,

for each value of VYðyj 2 YÞ; it will not only have one

probability that determines if the rule is relevant or not in

this value yj with respect to all the possible values of VX

with the corresponding probabilities, but will have a set of

possible probabilities depending on the random probability

assigned to each possible values of VX:

In the previous example, if c ¼ 2 we have to assign new

random probabilities to the possible values of the set VX;

obtaining another set C2: The sets C1 and C2 are obtained

with c = 1 and c = 2, respectively:

C1 ¼ f0:15; 0:73; 0:85; 0:27g
C2 ¼ f0:25; 0:53; 0:45; 0:37g:

For each possible value yj 2 Y ; for example y1 ¼ 0:4;

the possible probabilities that determine whether the rule is

relevant or not in this value 0.4, will be the set:

Cyj
¼ fCyj

; 8Ci; 1� i� cg ¼ f0:15; 0:25g:

Finally, to determine whether one rule is relevant or not,

considering all values of VY ; we need to choose one sets of

probabilities Cyj
and if the minimum of Cyj

is larger than or
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equal to 0.5 then we can determine that the rule is relevant.

For the reason, these sets are arranged according to the

uniform dominance defined in Limbourg (2005), which

induces a total order and the median set is chosen. In the

previous example, Cy1
¼ ½0:15; 0:25�; Cy2

¼ ½0:53; 0:73�;
Cy3
¼ ½0:45; 0:85� and Cy4

¼ ½0:27; 0:37�: The total order

Table 2 Dataset that define the event of Jump as well as whether one athlete is relevance or not in such event

Ins. DPE MC EI VM RA

1 [8.7, 9.7] [47, 52] [2.5, 2.62] [4.77, 4.83] f1g
2 [0.7, 1.3] [62, 67] [2.2, 2.24] [5.18, 5.21] f1=0þ 1=1g
3 [6.8, 7.7] [33, 38] [2.09, 2.16] [5.87, 5.9] f0g
4 [3.3, 4.1] [44, 47] [2.23, 2.27] [4.92, 5] f1g
5 [0, 0.8] [46, 50] [2.04, 2.14] [5, 5.04] f0g
6 [10.7, 11.6] [53, 57] [2.64, 2.72] [4.34, 4.4] f1g
7 [3.9, 4.7] [47, 55] [2.55, 2.6] [4.25, 4.3] f1g
8 [4.9, 5.6] [36, 44] [2.15, 2.18] [5.01, 5.03] f0:9=0þ 0:4=1g
9 [7.4, 8] [45, 46] [2.3, 2.37] [4.96, 5] f0g
10 [11.5, 12] [36, 40] [1.9, 1.94] [5.37, 5.46] f0:5=0þ 0:5=1g
11 [4.9, 5.7] [45, 50] [2.1, 2.14] [4.87, 4.94] f0:6=0þ 0:8=1g
12 [3, 3] [47, 52] [2.2, 2.29] [4.92, 5.01] f1g
13 [3.6, 4.3] [47, 53] [2.3, 2.36] [4.86, 4.9] f1g
14 [9, 9.3] [34, 35] [2.34, 2.35] [4.99, 5.1] f0g
15 [7.4, 8.3] [34, 35] [2.2, 2.26] [5.77, 5.83] f0g
16 [8.7, 10.1] [45, 47] [2, 2.15] [5, 5.1] f1g
17 [8.2, 9] [36, 39] [2.12, 2.24] [5.06, 5.14] f1g

Fig. 3 Outline of the proposed algorithm
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Table 3 Set of bounds of probabilities for each linguistic term

Ins. DPE MC EI

DPEL DPEM DPEH MCL MCM MCH EIL EIM EIH

1 0 [0.44, 0.44] [0.55, 0.55] [0, 0.11] [0.88, 1] [0, 0.11] 0 [0.33, 0.44] [0.55, 0.66]

2 [0.78, 0.88] [0.11, 0.21] [0] 0 [0, 0.22] [0.77, 1] [0.22, 0.22] [0.77, 0.77] 0

3 0 [0.77, 0.77] [0.22, 0.22] [0.77, 1] [0, 0.22] 0 [0.44, 0.44] [0.55, 0.55] 0

4 [0.33, 0.44] [0.55, 0.66] 0 [0.22, 0.33] [0.66, 0.77] 0 [0.11, 0.11] [0.88, 0.88] 0

5 [0.88, 1] [0, 0.11] 0 [0, 0.22] [0.77, 1] 0 [0.44, 0.55] [0.44, 0.55] 0

6 0 [0.11, 0.11] [0.88, 0.88] 0 [0.66, 0.77] [0.22, 0.33] 0 [0, 0.11] [0.88, 1]

7 [0.22, 0.33] [0.66, 0.77] 0 [0, 0.11] [0.77, 1] [0, 0.22] 0 [0.33, 0.33] [0.66, 0.66]

8 [0.11, 0.11] [0.88, 0.88] 0 [0.44, 0.77] [0.22, 0.55] 0 [0.33, 0.33] [0.66, 0.66] 0

9 0 [0.66, 0.66] [0.33, 0.33] [0.23, 0.29] [0.70, 0.76] 0 0 [0.88, 1] [0, 0.11]

10 0 0 [1, 1] [0.66, 0.77] [0.22, 0.33] 0 [1, 1] 0 0

11 [0.11, 0.11] [0.88, 0.88] 0 [0, 0.22] [0.77, 1] 0 [0.44, 0.44] [0.55, 0.55] 0

12 0.5 0.5 0 [0, 0.11] [0.88, 1] [0, 0.11] [0.11, 0.22] [0.77, 0.88] 0

13 [0.33, 0.33] [0.66, 0.66] 0 [0, 0.11] [0.88, 1] [0, 0.11] 0 [0, 0.11] [0.88, 1]

14 0 [0.44, 0.5] [0.5, 0.55] [0.88, 0.88] [0.11, 0.11] 0 0 [0.90, 0.92] [0.07, 0.09]

15 0 [0.66, 0.66] [0.33, 0.33] [0.88, 0.88] [0.11, 0.11] 0 [0.22, 0.22] [0.77, 0.77] 0

16 0 [0.33, 0.44] [0.55, 0.66] [0.22, 0.22] [0.77, 0.77] 0 [0.44, 0.66] [0.33, 0.55] 0

17 0 [0.55, 0.55] [0.44, 0.44] [0.66, 0.77] [0.22, 0.33] 0 [0.22, 0.44] [0.55, 0.77] 0

Count [3.28, 3.71] [8.28, 8.83] [4.83, 4.99] [5.01, 6.84] [8.70, 10.98] [1, 1.88] [3.99, 0.44] [9.68, 10.81] [2.18, 2.65]

Count (%) [0.19, 0.21] [0.48, 0.52] [0.28, 0.29] [0.29, 0.40] [0.51, 0.64] [0.05, 0.11] [0.23, 0.27] [0.56, 0.63] [0.12, 0.15]

Table 4 Set of bounds of probabilities for each linguistic term

Ins. VM RP

VML VMM VMH RPNo RPYes

1 [0.33, 0.33] [0.66, 0.66] 0 0 1

2 0 [0.83, 0.87] [0.12, 0.16] [0, 1] [0, 1]

3 0 0 [1, 1] 1 0

4 [0.11, 0.11] [0.88, 0.88] 0 0 1

5 [0.04, 0.09] [0.90, 0.95] 0 1 0

6 [0.88, 0.88] [0.11, 0.11] 0 0 1

7 [1, 1] 0 0 0 1

8 [0.05, 0.07] [0.92, 0.94] 0 [0.6, 0.9] [0.1, 0.4]

9 [0.11, 0.11] [0.88, 0.88] 0 1 0

10 0 [0.55, 0.55] [0.44, 0.44] 0.5 0.5

11 [0.22, 0.22] [0.77, 0.77] 0 [0.2, 0.6] [0.4, 0.8]

12 [0.11, 0.11] [0.88, 0.88] 0 0 1

13 [0.22, 0.22] [0.77, 0.77] 0 0 1

14 0 [1, 1] 0 1 0

15 0 [0.11, 0.11] [0.88, 0.88] 1 0

16 0 [1, 1] 0 0 1

17 0 [1, 1] 0 0 1

Count [3.09, 3.16] [11.33, 11.44] [2.46, 2.49] [6.29, 8] [9, 10.7]

Count (%) [0.182, 0.186] [0.66, 0.67] [0.144, 0.146] [0.37, 0.47] [0.52, 0.62]
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will be: Cy1
;Cy4

;Cy2
and Cy3

: In this case, as the number of

sets is par, the sets that represents the median are the sets Cy4

and Cy2
and, the minimum will be (0.27 ? 0.53)/2 = 0.4. As

the value obtained is\0.5, the rule is not relevant although

for several possible values of VY the rule seems relevant.

In Fig. 3, we show a diagram outlining the steps that are

needed to achieve the proposed algorithm.

4 Illustrative example

A small real-world dataset is given to illustrate the pro-

posed data-mining algorithm.

This dataset is a study of the ‘‘Athletics event’’ in the

University of Oviedo; in this case the Jump event, that

includes 17 instances and 5 attributes. These attributes are

(Vinuessa and Coll 1984; J.P. Martin, 2009, personal

communication): (1) the ratio between the weight and the

height (DPE); (2) tests of central (abdominal) muscles

(MC); (3) test of lower extremities (EI); (4) the maximum

speed in the 40-m race (VM) and (5) relevance of the

athlete (RA). Table 2 shows this dataset where the low-

quality items are represented by interval-values or fuzzy

subsets (see Sect. 3.1).

Let us use three fuzzy regions for each attribute.

Figure 4 shows the fuzzy membership functions for the

different attributes: ‘‘RLow’’, ‘‘RMiddle’’ and ‘‘RHigh’’.

These partitions are only relevant for the attributes

represented by interval-values (DPE, MC, EI and VM) due

to RA being defined by a fuzzy set.

The values considered for the input parameters of this

illustrative example are:

• Minimum support (a) = 0.05 (5%)

• Confidence (k) = 0.9 (90%)

• Number of cuts = 10

• Number of times that we sweep the probabilities (c) =

1.

The steps needed to obtain the fuzzy association rules

from LQD are:

Step 1 Transform each LQD eXi
j to obtain the fuzzy

membership value. For instance, the fuzzy membership

value interpreted as a set of bounds of probabilities from

the interval value [47, 52], of the first instance of the

attribute MC, will be:

f½0; 0:11�Low þ ½0:88; 1�Middle þ ½0; 0:11�Highg

where the upper and lower bounds of probabilities of the

linguistic label Middle, for example, are determined from

the set of possible membership values of x, with x 2 X;

which means with x 2 ½47; 52�: To obtain these possible

values we apply a-cuts to obtain a random set that contains

the unknown crisp value of the feature with a probability

greater than or equal to 1 - a.

Step 2 Calculate the frequency of each fuzzy. For

instance, the frequency of the attribute MC and the

linguistic term Low will be: CountMCLow
¼ ½0; 0:11� 	

½0; 0� 	 ½0:77; 1� 	 � � � 	 ½0:22; 0:22� 	 ½0:66; 0:77� ¼
½5:01; 6:84�: Tables 3 and 4 show the frequency of each

fuzzy item where each one will be a candidate (1-itemset).

Cr¼1 ¼ fDPEL;DPEM;DPEH;MCL;MCM;

MCH;EIL;EIM;EIH;VML;VMM;VMH;RPNo;RPYesg

Step 3 Check whether CountLjk
ð%Þ for all r-items in Cr is

larger than or equal to the predefined minimum support a:
Table 5 shows all the 1-itemsets that compose L1: The item

DPEMiddle ¼ DPEM; with CountDPEM
ð%Þ ¼ ½0:48; 0:52�;

will be part of L1 due to 0:52 [ 0:05:

Step 4 Since L1 is not null, the next step is then done. If

L1 is null the algorithm finishes.

Table 5 Set of 1-itemsets that

compose L1
Itemset maxfCountjkg

DPELow 0.21

DPEMiddle 0.52

DPEHigh 0.29

MCLow 0.4

MCMiddle 0.64

MCHigh 0.11

EILow 0.27

EIMiddle 0.63

EIHigh 0.15

VMLow 0.18

VMMiddle 0.67

VMHigh 0.14

RPNo 0.47

RPYes 0.62

Table 6 Subset of C2: DPEL

with the rest of itemset of L1
Itemset

ðDPELow;MCLowÞ
ðDPELow;MCMiddleÞ
ðDPELow;MCHighÞ
ðDPELow;EILowÞ
ðDPELow;EIMiddleÞ
ðDPELow;EIHighÞ
ðDPELow;VMLowÞ
ðDPELow;VMMiddleÞ
ðDPELow;VMHighÞ
ðDPELow;RPNoÞ
ðDPELow;RPSiÞ
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Step 5 Join Lr (r = 1) to generate the candidate Crþ1: C2

is generated as follows: ðDPEL;MCLÞ; ðDPEL;MCMÞ;
. . .; ðVMH;RPYesÞ: Table 6 shows a subset of the

candidate C2 from the combination between DPEL and

the rest of the itemset of L1: Notice that the itemsets

ðDPEL;DPEMÞ; ðDPEL;DPEHÞ and ðDPEM; DPEHÞ are

not in C2 since the items belong to the same item DPE.

Step 6 For each r-itemset of Cr make the following

substeps:

a. Transform each r-itemset to obtain the fuzzy

membership value. Table 7 shows the results of all

the instances with respect to ðDPEL;MCMÞ: For

instance, the value [0, 0.19], of the 2-itemset

ðDPEL;MCMÞ; in the instance i = 2, is calculated

from the product of the sets of probabilities of each

itemset of r-itemset ([0.78, 0.88] 
 [0, 0.22] = [0,

0.19]).

b. Calculate the frequency of each r-itemset. In

Table 7 the results of the r-itemset (DPEL;MCM)

in all the instances are shown.

c. Check whether these sets of bounds are larger than

or equal to the minimum support to insert the

r-itemset in L2: From the subset of candidate C2

(Table 6), the r-itemsets s that compose Lrþ1ðL2Þ are

shown in Table 8.

Step 7 If Lr þ 1 is null, then do the next step, otherwise

update the number of itemsets in the set of candidates

(r = r ? 1) and repeat the steps 5 and 6.

Step 8 Collect in R the itemsets of each Li; where i� 2:

Step 9 Construct all the possibles fuzzy association rules

from the itemsets of R: From the subset of L2 (Table 8),

the association rules possible are shown in Table 9.

Step 10 Determine whether the fuzzy association rules

obtained are relevant or must be deleted. Table 10 shows

the results of Cyj with c = 1 in the rule ‘‘If DPEM and

MCL and VMH then RPNo’’, with X = [0.0665, 0.0767]

and Y = [0.0665, 0.0767]. The values of Cyj are arranged

according to the uniform dominance, in this example a

strict dominance due to the value of c being 1, and in this

way can choose the set that represents the median. This

fuzzy association rule will be relevant because its

median takes the value 0.632.

Table 8 A subset of r-itemset

from L2
Itemset maxfCountsg

ðDPEL;MCMÞ 0.16

ðDPEL;MCHÞ 0.06

ðDPEL;EILÞ 0.05

ðDPEL;EIMÞ 0.15

ðDPEL;VMMÞ 0.17

ðDPEL;RPNoÞ 0.12

ðDPEL;RPYesÞ 0.15

Table 7 fuzzy membership

value of DPEL

V

MCM
Ins. DPEL MCM DPEL

V

MCM

1 0 [0.88, 1] 0

2 [0.78, 0.88] [0, 0.22] [0, 0.19]

3 0 [0, 0.22] 0

4 [0.33, 0.44] [0.66, 0.77] [0.22, 0.34]

5 [0.88, 1] [0.77, 1] [0.69, 1]

6 0 [0.66, 0.77] 0

7 [0.22, 0.33] [0.77, 1] [0.17, 0.33]

8 [0.11, 0.11] [0.22, 0.55] [0.02, 0.06]

9 0 [0.70, 0.76] 0

10 0 [0.22, 0.33] 0

11 [0.11, 0.11] [0.77, 1] [0.08, 0.11]

12 0.5 [0.88, 1] [0.44, 0.5]

13 [0.33, 0.33] [0.88, 1] [0.29, 0.33]

14 0 [0.11, 0.11] 0

15 0 [0.11, 0.11] 0

16 0 [0.77, 0.77] 0

17 0 [0.22, 0.33] 0

Count [3.28, 3.71] [8.70, 10.98] [1.93, 2.88]

Count (%) [0.19, 0.21] [0.51, 0.64] [0.11, 0.16]
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The fuzzy association rules obtained in this illustrative

example are shown in Table 11.

5 Experimental study

Several experiments have been carried on a real-world dataset

Inexpert-57 to evaluate the good behavior of this proposed

algorithm, which is available in the repository KEEL-dataset

(http://www.keel.es/dataset.php) (Alcala-Fdez et al. 2011).

In the following subsections, we describe the real-world

dataset as well as the experiments carried out. Then, we

analyze the fuzzy association rules according to the value

of the minimum support and confidence and will show the

high level of knowledge obtained in these rules. Finally,

we study the complexity and scalability of the proposed

algorithm.

5.1 Description of the dataset

Dyslexia can be defined as a learning disability in people

with normal intellectual coefficient, and without further

physical or psychological problems that can explain such a

disability. According to Thomson and Gilchrist (1996),

dyslexia is a neurologically based, often familial, disorder

which interferes with the acquisition and processing of

language […]. Although dyslexia is lifelong, individuals

with dyslexia frequently respond successfully to timely and

appropriate intervention.

In this research we are interested in obtaining fuzzy

association rules in the early diagnosis of dyslexia of

schoolchildren in Asturias (Spain), where this disorder is

not rare. It has been estimated that between 4 and 5% of

these schoolchildren have dyslexia. The average number of

children in a Spanish classroom is 25, therefore there are

cases in most classrooms (Ajuriaguerra 1976). Notwith-

standing the widespread presence of dyslexic children,

detecting the problem at this stage is a complex process,

that depends on many different indicators, mainly intended

to detect whether reading, writing and calculus skills are

acquired at the proper rate. Moreover, there are disorders

different from dyslexia that share some of their symptoms

and therefore the tests not only have to detect abnormal

values of the mentioned indicators but in addition, must

also separate those children that actually suffer from dys-

lexia from those where the problem can be related to other

causes (inattention, hyperactivity, etc.).

We have considered a real-world dataset Inexpert-57

regarding this experimentation. For its elaboration, all

schoolchildren in Asturias were examined by a psycholo-

gist in diagnose dyslexia from several tests.

With these tests, from the criterion and knowledge of

the inexpert and expert, several LQD were obtained.

Table 9 Fuzzy association

rules obtained from L2
If DPE.Low then MC.Middle

If MC.Middle then DPE.Low

If DPE.Low then MC.High

If MC.High then DPE.Low

If DPE.Low then EI.Low

If EI.Low then DPE.Low

If DPE.Low then EI.Middle

If EI.Middle then DPE.Low

If DPE.Low then VM.Middle

If VM.Middle then DPE.Low

If DPE.Low then RP.No

If RP.No then DPE.Low

If DPE.Low then RP.Si

If RP.Si then DPE.Low

Table 10 Steps to determine whether the fuzzy association rule ‘‘If DPEM and MCL and VMH then RPNo’’ is relevant or must be deleted

Ycut Xcut PXcut
Check whether Xcut�ðYcut � kÞ and Xcut� Ycut Ccut

y1 � k ¼ 0:069 y2 � k ¼ 0:068 y3 � k ¼ 0:067 . . . y10 � k ¼ 0:059

y1 ¼ 0:076 x1 ¼ 0:0767 0.15 Yes (x1 [ y2) (x1 [ y3) . . . (x1 [ y10) 0.15

y2 ¼ 0:075 x2 ¼ 0:0756 0.07 Yes Yes (x2 [ y3) . . . (x2 [ y10) 0.24

y3 ¼ 0:744 x3 ¼ 0:0744 0.087 Yes Yes Yes . . . (x3 [ y10) 0.307

y4 ¼ 0:733 x4 ¼ 0:0733 0.23 Yes Yes Yes . . . (x4 [ y10) 0.537

y5 ¼ 0:0722 x5 ¼ 0:0722 0.19 Yes Yes Yes . . . (x5 [ y10) 0.727

y6 ¼ 0:0710 x6 ¼ 0:0710 0.27 Yes Yes Yes . . . (x6 [ y10) 0.997

y7 ¼ 0:0699 x7 ¼ 0:0699 0.003 Yes Yes Yes . . . (x7 [ y10) 1

y8 ¼ 0:0688 x8 ¼ 0:0688 0 No Yes Yes . . . (x8 [ y10) 0.85

y9 ¼ 0:0676 x9 ¼ 0:0676 0 No No Yes . . . (x2 [ y10) 0.78

y10 ¼ 0:0665 x10 ¼ 0:0665 0 No No No . . . Yes 0
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The objective is to obtain relevant information through

fuzzy association rules when an inexpert in the field of

dyslexia (parents, tutors) evaluates the children. To this

end, the inexpert expresses what he/she is observing from

the tests obtained when one child is evaluated. The tests

applied in Spanish schools for detecting this problem, when

an expert evaluates the children, are shown in Table 12

(the tests marked with a ‘‘*’’ are not included in this

version of the low-quality dataset obtained from inexpert in

the field of dyslexia). Each test observed by the inexpert is

described by several variables providing more than one

item in the low-quality set. This implies that we will have

sub-items for each test applied. For instance, the test

T.A.L.E (Toro and Cervera 1980) could be defined directly

by an item, expressed, for example with a linguistic terms

‘‘Medium’’; however, this test is defined by several items.

Table 11 Fuzzy association rules obtained from the illustrative example

Rule Median

R0: If DPE is Middle and MC is Low and VM is High then RP is No 0.632

R1: IF DPE IS Middle AND EI IS Middle AND VM IS High THEN RP IS No 0.682

R2: IF DPE IS Middle AND VM IS High THEN RP IS No 0.921

R3: IF DPE IS High AND MC IS Middle AND EI IS High THEN RP IS Si 0.5

R4: IF DPE IS High AND EI IS High THEN RP IS Si 0.778

R5: IF DPE IS High AND EI IS High AND VM IS Low THEN RP IS Si 0.614

R6: IF DPE IS High AND VM IS Low THEN RP IS Si 0.581

R7: IF MC IS Low AND EI IS Middle AND VM IS High THEN RP IS No 1

R8: IF MC IS Low AND VM IS High THEN RP IS No 0.6

R9: IF MC IS Middle AND EI IS High THEN RP IS Si 0.5

R10: IF MC IS Middle AND EI IS High AND VM IS Low THEN RP IS Si 0.667

R11: IF EI IS Middle AND VM IS High THEN RP IS No 0.841

R12: IF EI IS High THEN RP IS Si 0.73

R13: IF EI IS High AND VM IS Low THEN RP IS Si 1

Table 12 Categories of the

tests currently applied in

Spanish schools for detecting

dyslexia when an expert

evaluates the children

The tests marked with a ‘‘*’’ are

not included in the version of

the low-quality dataset obtained

from inexpert in the field of

dyslexia

Category Test Description

Verbal comprehension BAPAE Vocabulary

BADIG Verbal orders

BOEHM Basic concepts

Logic reasoning RAVEN� Color

BADIG Figures

ABC� Actions and details

Memory Digit WISC-R� Verbal-additive memory

BADIG� Visual memory

ABC Auditive memory

Level of maturation ABC Combination of different tests

Sensory–motor skills BENDER� Visual–motor coordination

BADIG Perception of shapes

BAPAE� Spatial relations, shapes, orientation

STAMBACK Auditive perception, rhythm

HARRIS/HPL Laterality, pronunciation

ABC Pronunciation

GOODENOUGHT Spatial orientation, body scheme

Attention Toulose� Attention and fatigability

ABC� Attention and fatigability

Reading–writing TALE Analysis of reading and writing
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In Table 13 the items that compose the analysis of reading

of the test TALE are shown.

The real-world dataset of dyslexia used in this proposal,

denominated ‘‘Inexpert-57’’, is composed of groups of low-

quality items where each group of items describes the

behavior of a child in one test. Besides these groups of

items, this dataset will contain the level of dyslexia of this

child when an expert in the field diagnoses the child from

the same test that the inexpert has used. In this way, each

case or child has been individually diagnosed by a psy-

chologist into one or more of the values ‘‘no dyslexia’’,

‘‘control and revision’’, ‘‘dyslexic’’ and ‘‘other disorders’’

(inattention, hyperactivity, etc.).

This dataset contains vague data; we have collected

these data from 52 schoolchildren of Asturias (Spain)

during our research and where each case has been indi-

vidually classified by a psychologist. Each schoolchild is

composed of 57 items; these 57 items are obtained from

different tests (Table 12). Figure 5 shows the major tests as

well as the number of items that compose each test.

Moreover, for each item we have indicated whether it is

defined by an interval or by a finite set of linguistic terms

associated with Ruspini’s partitions.

5.2 Experiments settings

The linguistic partitions are composed of several linguistic

terms with uniformly distributed triangulars. The number

of partitions of each item depends on whether this item is

represented by an interval value or fuzzy subset. In the first

case the linguistic partitions are composed of five linguistic

terms, in the second case the expert defines the linguistic

terms and the membership functions in advance. For

example, in Table 13, the linguistic terms are defined in

advance of several items of the test TALE.Reading.

Several experiments have been carried out with different

minimum supports and confidences, where the number of

cuts is 7 and c is 2.

5.3 Analysis of the fuzzy association rules via supports

and confidence

In this section several experiments have been carried out to

analyze the number of fuzzy association rules obtained by

the fuzzy data-mining algorithm from low-quality data.

The relationship between the number of fuzzy association

rules with respect to several values of the minimum support

Table 13 Analysis of reading of the test TALE defined by several

items

Item Domain

Analysis of reading. TALE

1. Reading-comprehension [0, 10]

2. Global-level fImpossible, Just-read, Low, Regulate,

Normal, Goodg
3. Finger-tracking fYes, No, Little, A-lotg
4. Move-head-no-eyes fYes, No, Little, A-lotg
5. Heard fComprehensive, No-comprehensiveg
6. Intonation fBad, Good, Regulate, Punctuation-no-

respectedg
7. Syllables fYes, No, Occasionallyg
8. Investment fYes, No, Occasionallyg
9. Nervous fYes, Nog
10. Omission fYes, No, Occasionallyg
11. Substitution fYes, No, Occasionallyg
12. Rotation fYes, No, Occasionallyg
13. Speed fBad, Good, Regulate, Normal, Slowg
14. Arrhythmic fYes, No, Occasionallyg
15. Rectification fA-lot, Never, Often, Normal, Justg
16. Silent fYes, No, Decreases-levelg

Fig. 4 The membership functions used in the items DPE, MC, EI and VM
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along with different minimum confidences k is shown in

Fig. 6. We can observe that the number of rules decreases

when the minimum support value increases. Moreover, we

appreciate that the curves obtained have similar shapes and

the distance between them is small with values of the

minimum support larger than 0.2. With minimum support

0.2 and particularly with 0.1 the distances between the

curves is more elevated, notably when the minimum

confidence takes the value 0.5 or 0.6. This implies that

there are number of rules that are uncommon or are special

cases, highlighting the large distance between curves when

the minimum support is 0.1.

Figure 7 shows the relations between the number of

fuzzy association rules and several values of the minimum

confidence along with different minimum support values.

We can observe that the number of rules increases when

Fig. 5 Inexpert-57 with their

main tests, indicating the

number of items in each test as

well as whether the items are

intervals or are defined by

linguistic terms

Table 14 Level of knowledge and interpretability in the fuzzy association rules of Inexpert-57

Rules Support-rule fCyig MedianfCyig

IF Harris IS Right AND [0.242, 0.248] f½0:159; 0:209�; ½0:191; 0:715�½0:191; 0:715�;
½1; 1�; ½1; 1�; ½1; 1�; ½1; 1�g

[1, 1]

Dyslexia IS No-Dyslexia THEN

THEN Goodenought-Proportions IS Normal

IF Harris IS Right AND [0.223, 0.248] f½0:862; 0:996�; ½0:862; 0:996�½0:873; 1�; ½0:873; 1�;
½0:873; 1�; ½0:873; 1�; ½1; 1�g

[0.873, 1]

Dyslexia IS No-Dyslexia AND

Goodenought-Proportions IS Normal

THEN Reading-finger is No

IF Harris IS Right AND [0.223, 0.248] f½0:821; 0:924�; ½0:821; 0:924�½0:963; 0:99�;
½0:963; 0:99�; ½0:963; 0:99�; ½0:963; 0:99�; ½1; 1�g

[0.963, 0.99]

Dyslexia IS No-Dyslexia AND

Goodenought-Proportions IS Normal

THEN Reading is Comprehensive

IF Harris IS Right AND [0.223, 0.248] f½0:95; 0:996�; ½0:95; 0:996�½0:957; 1�; ½0:957; 1�;
½0:957; 1�; ½0:957; 1�; ½1; 1�g

[0.957, 1]

Dyslexia IS No-Dyslexia AND

Goodenought-Proportions IS Normal

THEN Reading-eyes-moved is No
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the minimum confidence decreases. Notice that the mini-

mum confidence influences the number of fuzzy rules when

the minimum support takes small values such as 0.1 and

0.2. On the other hand, we appreciate that with a minimum

support larger than 0.2, there are many rules that satisfy the

minimum confidence when this is increased.

5.4 High level of knowledge of Inexpert-57

To analyze the fuzzy rules obtained from this proposal,

several experiments have been carried out with the dataset

‘‘Inexpert-57’’. The information obtained provides a high

level of knowledge through the fuzzy association rules. The

number of fuzzy association rules obtained with a mini-

mum support of 0.2 and a minimum confidence of 0.8, in

‘‘Inexpert-57’’, was 669. An example of the level and

interpretability of information obtained is shown in

Table 14 with several relevant fuzzy association rules.

These rules show that one child diagnosed as ‘‘No dys-

lexic’’ and, in the test of Goodenought, in the subitem

denominated proportions, obtains a ‘‘normal’’ result, then

the child is not going to have problems in reading due to

Fig. 6 Relationship between

the number of fuzzy association

rules and the minimum support

along with different minimum

confidences

Fig. 7 Relationship between

the number of fuzzy association

rules and the minimum

confidence along with different

minimum supports

Table 15 Level of knowledge and interpretability in the fuzzy association rules of Inexpert-57 where the consequent is the level of dyslexia

Rules Support-rule fCyig MedianfCyig

IF Harris IS Right AND [0.204, 0.229] f½0:115; 0:431�; ½0:22; 0:99�½0:982; 0:991�;
½1; 1�; ½1; 1�; ½1; 1�; ½1; 1�g

[1, 1]

Reading-investments IS No AND

Goodenought-Proportions IS Normal

THEN Dyslexia IS No-Dyslexia

IF Harris IS Right AND [0.212, 0.231] f½0:007; 0:018�; ½0:011; 0:027�½0:014; 0:056�;
½1; 1�; ½1; 1�; ½1; 1�; ½1; 1�g

[1, 1]

Reading-substitutions IS No AND

Goodenought-Proportions IS Normal

THEN Dyslexia IS No-Dyslexia
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the typical characteristics such as eyes move, read with

finger, not understanding, etc. are not obtained. Also, this

information provides us with the information that we will

have to control the children that we see are ‘‘No dyslexic’’,

have a ‘‘normal’’ result in the test of Goodenought but have

problems in reading.

The rules shown in Table 15 provide different infor-

mation to that found in the previous rules. In this case,

these rules determine when one child has to be diagnosed

as ‘‘No dyslexic’’. We can observe that the test of

Goodenought and reading are very relevant tests to diag-

nose children and particularly two subitems of the test of

reading: investments and substitutions. We can appreciate

that whether the children are right-handed in the test of

Harris is relevant or not due to this variable or test

appearing in the most of rules obtained. This is the
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Fig. 8 Relationship between

the runtime (minutes) and the

number of attributes with the

100% of instances, a ¼ 0:2;
k ¼ 0:8; cuts = 10 and c ¼ 2:
The number of rules is also

shown

Table 16 Special cases of the dataset ‘‘Inexpert-57’’ with a = 0.1 and k = 0.5

Rules Support-rule fCyig MedianfCyig

IF Harris-dotted IS Right AND [0.038, 0.106] f½0:081; 0:358�; ½0:28; 0:285�; ½0:715; 0:72�; ½0:634; 0:899�;
½0:637; 0:899�; ½0:81; 0:978�; ½0:977; 0:98�g

[0.634, 0.899]

Reading-investments IS Yes AND

Goodenought-Proportions IS Normal AND

Dyslexia IS Dyslexic THEN

Writing-Omissions IS Yes

IF Harris-dotted IS Right AND [0.039, 0.101] f½0:046; 0:117�; ½0:191; 0:221�; ½0:77; 0:808�; ½0:776; 0:808�;
½0:883; 0:954�; ½0:964; 0:992�; ½0:989; 0:992�g

[0.776, 0.808]

Boehm-Concepts IS Medium AND

Goodenought-Proportions IS Normal AND

Dyslexia IS No-Dyslexic THEN

Reading-nervous IS No

IF Harris-dotted IS Right AND [0.079, 0.11] f½0:008; 0:103�; ½0:045; 0:604�; ½0:067; 0:806�;
½0:897; 0:992�; ½1; 1�; ½1; 1�; ½1; 1�g

[0.897, 0.992]

Reading IS Regular AND

Goodenought-Global IS Regular AND

Writing-unions IS Yes THEN

Dyslexia IS Dyslexic

IF Harris-dotted IS Right AND [0.095, 0.101] f½1; 1�; ½1; 1�½1; 1�; ½1; 1�;
½1; 1�; ½1; 1�; ½1; 1�g

[1, 1]

Dyslexia IS Other-disorders THEN

THEN Goodenought-Global IS Regular
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consequence of most children studied and diagnosed being

right-handed so we can determine that this variable is

irrelevant.

Others rules provide information in relation to children

with dyslexia, for instance IF Reading-Syllables IS Yes

AND Dyslexia IS Dyslexic THEN Writing-Unions IS Yes.

In addition, it is important to highlight that when the values

of the minimum confidences and support are small then the

number of fuzzy rules increases and provides information

about special cases of the dataset and new items appear

in these rules (as BOEHM-Concepts). For instance, in

Table 16 we show several rules obtained with a ¼ 0:1 and

k = 0.5 although, we can observe that the minimum of the

median of the set fCyig in some rules is more elevated than

0.5, for instance in the third rule the minimum is 0.897 or

in the last one it is 1.

5.5 Analysis of complexity and scalability

The complexity and scalability of this fuzzy data-mining

algorithm from LQD has been analyzed from several

experiments carried out with an HP EliteBook 8540w,

processor Intel(R) Core(TM)i5, 2.4 GHz CPU, 4 Gb of

RAM and running in Windows 7. All the experiments were

performed with a ¼ 0:2; k ¼ 0:8; cuts = 10 and c ¼ 2:

To analyze the complexity and scalability, we compare

the relationship between the runtime and the number of

items. Figure 8 shows the relationship between the runtime

and the number of items, observing that the time increases

as well as the number of rules when the number of items

also increases.

6 Conclusions

In this paper, we have proposed a new data-mining algo-

rithm with the aim of getting high-quality fuzzy association

rules from databases with interval and fuzzy values. This

proposal is an extension of the algorithm proposed by

Hong et al., which integrates fuzzy-set concepts with the

apriori mining algorithm (Agrawal and Srikant 1994) from

quantitative values. To do that, several important aspects

have been considered due to the true value of one data

being unknown and the fuzzy membership value inter-

preted as a set of bounds of probabilities. This affects the

calculation of the frequency of occurrence of the items, due

to it being defined by a set of bounds of probabilities, as

well as the calculation of the confidence of a rule which is

contained in a set of probabilities.

The behavior and performance of this new algorithm,

able to obtain fuzzy association rules from low-quality

data, is shown from one real-world dataset based on the

Diagnosis of Dyslexia, obtaining as a result a high level of

knowledge and interesting patterns. These fuzzy associa-

tion rules also provide us with information about special

cases, in the low-quality dataset of diagnosis of dyslexia,

when the value of the minimum support and confidence

decreases. Notice that these rules from LQD provide

knowledge about the dependencies and relation between

the items and, therefore, several items can be excluded or

removed due to their being considered irrelevant.
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del Ejército

Wu B, Sun C (2001) Interval-valued statistics, fuzzy logic, and their

use in computational semantics. J Intell Fuzzy Syst 1–2(11):1–7

Zhang C, Zhang S (2002) Association rule mining: models and

algorithms. Springer, Berlin

Mining fuzzy association rules from low-quality data 901

123


	Mining fuzzy association rules from low-quality data
	Abstract
	Introduction
	Fuzzy data-mining algorithm for quantitative values
	Low-quality data: representation and interpretation
	Representation of low-quality values
	Fuzzy membership with low-quality data
	Fuzzy data-mining algorithm and low-quality data

	Illustrative example
	Experimental study
	Description of the dataset
	Experiments settings
	Analysis of the fuzzy association rules via supports and confidence
	High level of knowledge of Inexpert-57
	Analysis of complexity and scalability

	Conclusions
	Acknowledgments
	References


