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ABSTRACT

This chapter provides data and analysis of the dependability and fault tolerance for three op-
erating systems: the Tandem/GUARDIAN fault-tolerant system, the VAX/VMS distributed
system, and the IBM/MVS system. Based on measurements from these systems, basic soft-
ware error characteristics are investigated. Fault tolerance in operating systems resulting
from the use of process pairs and recovery routines is evaluated. Two levels of models are
developed to analyze error and recovery processes inside an operating system and interac-
tions among multiple instances of an operating system running in a distributed environment.

The measurements show that the use of process pairs in Tandem systems, which was
originally intended for tolerating hardware faults, allows the system to tolerate about 70%
of defects in system software that result in processor failures. The loose coupling between
processors which results in the backup execution (the processor state and the sequence of
events occurring) being different from the original execution is a major reason for the mea-
sured software fault tolerance. The IBM/MVS system fault tolerance almost doubles when
recovery routines are provided, in comparison to the case in which no recovery routines
are available. However, even when recovery routines are provided, there is almost a 50%
chance of system failure when critical system jobs are involved.

11.1 INTRODUCTION

The research presented in this chapter evolved from our previous studies on operating
system dependability [Hsu87, Lee92, Lee93a, Lee93b, Tan92b, Vel84]. This chapter pro-
vides data and analysis of the dependability and fault tolerance of three operating systems:
the Tandem/GUARDIAN fault-tolerant system, the VAX/VMS distributed system, and the
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IBM/MVS system. A study of these three operating systems is interesting because they are
widely used and represent the diversity in the field. The Tandem/GUARDIAN and VAX/VMS
data provide high-level information on software fault tolerance. The MVS data provide de-
tailed information on low-level error recovery. Our intuitive observation is that GUARDIAN
and MVS have a variety of software fault tolerance features, while VMS has little explicit
software fault tolerance.

Although an operating system is an indispensable software system, little work has been
done on modeling and evaluation of the fault tolerance of operating systems. Major ap-
proaches for software fault tolerance rely on design diversity [Ran75, Avi84]. However, these
approaches are usually inapplicable to large operating systems as a whole due to cost con-
straints. This chapter illustrates how a fault tolerance analysis of actual software systems, per-
forming analogous functions but having different designs, can be performed based on actual
measurements. The chapter provides the information of how software fault tolerance concepts
are implemented in operating systems and how well current fault tolerance techniques work.
It also brings out relevant design issues in improving the software fault tolerance in operating
systems. The analysis performed illustrates how state-of-the-art mathematical methods can be
applied for analyzing the fault tolerance of operating systems.

Ideally, we would like to measure different systems under identical conditions. The real-
ity, however, is that differences in operating system architectures, instrumentation conditions,
measurement periods, and operational environments make this ideal practically impossible.
Hence, a direct and detailed comparison between the systems is inappropriate. It is, how-
ever, worthwhile to demonstrate the application of modeling and evaluation techniques using
measurements on different systems. Also, these are mature operating systems that are slow-
changing and have considerable common functionality. Thus, the major results can provide
some high-level comparisons that point to the type and nature of relevant dependability issues.

Topics discussed include: 1) investigation of basic error characteristics such as software
fault and error profile, time to error (TTE) and time to recovery (TTR) distributions, and error
correlations; 2) evaluation of the fault tolerance of operating systems resulting from the use
of process pairs and recovery routines; 3) low-level modeling of error detection and recov-
ery in an operating system, illustrated using the IBM/MVS data, and 4) high-level modeling
and evaluation of the loss of work in a distributed environment, illustrated using the Tan-
dem/GUARDIAN and VAX/VMS data.

The next section introduces the related research. Section 11.3 explains the systems and
measurements. Section 11.4 investigates software fault and error profile, TTE and TTR dis-
tributions, and correlated software failures. Section 11.5 evaluates the fault tolerance of op-
erating systems. Section 11.6 builds two levels of models to describe software fault tolerance
and performs reward analysis to evaluate software dependability. Section 11.7 concludes the
chapter.

11.2 RELATED RESEARCH

Software errors in the development phase have been studied by researchers in the software
engineering field [Mus87]. Software error data collected from the DOS/VS operating system
during the testing phase was analyzed in [End75]. A wide-ranging analysis of software error
data collected during the development phase was reported in [Tha78]. Relationships between
the frequency and distribution of errors during software development, the maintenance of the
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developed software, and a variety of environmental factors were analyzed in [Bas84]. An
approach, called orthogonal defect classification, to use observed software defects to provide
feedback on the development process was proposed in [Chi92]. These studies attempt to tune
the software development process based on error analysis.

Software reliability modeling has been studied extensively, and a large number of mod-
els have been proposed (reviewed in [Goe85, Mus87]). However, modeling and evaluation
of fault-tolerant software systems are not well understood, although several researchers have
provided analytical models of fault-tolerant software. In [Lap84], an approximate model was
derived to account for failures due to design faults; the model was also used to evaluate
fault-tolerant software systems. In [Sco87], several reliability models were used to evaluate
three software fault tolerance methods. Recently, more detailed dependability modeling and
evaluation of two major software fault tolerance approaches—recovery blocks and N-version
programming—were proposed in [Arl90].

Measurement-based analysis of the dependability of operational software has evolved over
the past 15 years. An early study proposed a workload-dependent probabilistic model to pre-
dict software errors based on measurements from a DEC system [Cas81]. A study of fail-
ures and recovery of the MVS/SP operating system running on an IBM 3081 machine ad-
dressed the issue of hardware-related software errors [Iye85]. A recent analysis of data from
the IBM/MVS system investigated software defects and their impact on system availability
[Sul91]. A discussion of issues of software reliability in the system context, including the
effect of hardware and management activities on software reliability and failure models, was
presented in [Hec86]. Methodologies and advances in experimental analysis of computer sys-
tem dependability over the past 15 years are reviewed in [Iye93].

11.3 MEASUREMENTS

For this study, measurements were made on three operating systems: the Tandem/GUARDIAN
system, the VAX/VMS system, and the IBM/MVS system. Table 11.1 summarizes the mea-
sured systems. These systems are representative of the field in that they have varying degrees
of fault tolerance embedded in the operating system. The following subsections introduce the
three systems and measurements. Details of the measurements and data processing can be
found in [Hsu87, Lee92, Lee93b, Tan92b, Vel84].

Table 11.1 Measured systems

| HW/SW System || Architecture | Fault-Tolerance | Workload
Tandem/GUARDIAN || Distributed | Single-Failure | 1) Software Development
Tolerance 2) Customer Applications
IBM 3081/MVS Single Recovery System Design/Development
Management
VAXcluster/VMS Distributed Quorum 1) Scientific Applications
Algorithm 2) Research Applications
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11.3.1 Tandem/GUARDIAN

The Tandem/GUARDIAN system is a message-based multiprocessor system built for on-line
transaction processing. High availability is achieved via single-failure tolerance. A critical
system function or user application is replicated on two processors as the primary and backup
processes, i.e., as process pairs. Normally, only the primary process provides service. The
primary sends checkpoints to the backup so that the backup can take over the function on
a failure of the primary. A software failure occurs when the GUARDIAN system software
detects nonrecoverable errors and asserts a processor halt. The “I’m alive” message protocol
allows the other processors to detect the halt and take over the primaries which were executing
on the halted processor.

A class of faults and errors that cause software failures was collected. Two types of
data were used: human-generated software failure reports (used in Section 11.4.1 and Sec-
tion 11.5.1) and on-line processor halt logs (used in Section 11.4.2, Section 11.4.4, and Sec-
tion 11.6.1). Human-generated software failure reports provide detailed information about
the underlying faults, failure symptoms, and fixes. Processor halt logs provide near-100% of
reporting and accurate timing information on software failures and recovery.

The source of human-generated software failure reports is the Tandem Product Report
(TPR) database. A TPR is used to report all problems, questions, and requests for enhance-
ments by customers or Tandem employees concerning any Tandem product. A TPR consists
of a header and a body. The header provides fixed fields for information such as the date,
customer and system identifications, and brief problem description. The body of a TPR is
a textual description of all actions taken by Tandem analysts in diagnosing a problem. If a
TPR reports a software failure, the body also includes the log of memory dump analyses per-
formed by Tandem analysts. Two-hundred TPRs consisting of all reported software failures
in all customer sites during a time period in 1991 were used.

The processor halt log is a subset of the Tandem Maintenance and Diagnostic System
(TMDS) event log maintained by the GUARDIAN operating system. Measurements were
made on five systems—one field system and four in-house systems—for a total of five system-
years. Software failures are rare in the Tandem system, and only one of the in-house systems
had enough software failures for a meaningful analysis. This system was a Tandem Cyclone
system used by Tandem software developers for a wide range of design and development ex-
periments. It was operating as a beta site and was configured with old hardware. As such, it is
not representative of the Tandem system in the field. The measured period was 23 months.

11.3.2 IBM/MVS

The MVS is a widely used IBM operating system. Primary features of the system are reported
to be efficient storage management and automatic software error recovery. The MVS system
attempts to correct software errors using recovery routines. The philosophy in the MVS is
that for each major system function, the programmer envisions possible failure scenarios and
writes a recovery routine for each. It is, however, the responsibility of the installation (or the
user) to write recovery routines for applications. The detection of an error is recorded by an
operating system module.

Measurements were made on an IBM 3081 mainframe running the IBM/MVS operating
system. The system consisted of dual processors with two multiplexed channel sets. Time-
stamped, low-level error and recovery data on errors affecting the operating system functions
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were collected. During the measurement period, the system was used primarily to provide
a time-sharing environment to a group of engineering communities for their daily work on
system design and development. Two measurements were made. The measurement periods
were 14 months and 12 months. The source of the data was the on-line error log file produced
by the IBM/MVS operating system.

11.3.3 VAX/VMS

A VAXcluster is a distributed computer system consisting of several VAX machines and mass
storage controllers connected by the Computer Interconnect (CI) bus organized as a star topol-
ogy [Kro86]. One of the VAXcluster design goals is to achieve high availability by integrating
multiple machines in a single system. The operating system provides the cluster-wide sharing
of resources (devices, files, and records) among users. It also coordinates the cluster members
and handles recoverable failures in remote nodes via the Quorum algorithm.

Each operating system running in the VAXcluster has a parameter called VOTES and a
parameter called QUORUM. If there are n machines in the system, each operating system
usually sets its QUORUM to [n/2 + 1]. The parameter VOTES is dynamically set to the
number of machines currently alive in the VAXcluster. The processing of the VAXcluster pro-
ceeds only if VOTES is greater than or equal to QUORUM. Thus, the VAXcluster functions
like an |n/2 + 1]-out-of-n system.

The two measured VAXclusters had different configurations. The first system, VAX1, was
located at the NASA Ames Research Center, a typical scientific application environment. It
consisted of seven machines (four 11/785’s, one 11/780, one 11/750, and one 8600) and four
controllers. The data collection periods for the different machines in VAX1 varied from § to 10
months (from October 1987 through August 1988). The second system, VAX?2, was located
at the University of Illinois, an academic research and student application environment. It
consisted of four machines (two 6410’s, one 6310, and one 11/750) and one controller. The
data collection period was 27 months (from January 1989 through March 1991). The source
of the data was the on-line error log file produced by the VAX/VMS operating system.

114 BASIC ERROR CHARACTERISTICS

In this section, we investigate basic error characteristics using the measured data. These in-
clude fault and error profile, time to error (TTE) and time to recovery (TTR) distributions, and
correlated software failures.

11.4.1 Fault and Error Classification

Collection of software faults and errors identified naturally reflect the characteristics of the
software development environment. Many studies attempted to tune the software develop-
ment process by analyzing the faults identified during the development phase [Tha78, End75,
Bas84]. However, fault and error profiles of operational software can be quite different from
those of the software during the development phase, due to the differences in the operational
environment and software maturity. Therefore, it is necessary to investigate the fault and er-
ror profiles of operational software. Also, software fault and error categorization for the three
measured operating systems is important because they are widely used operating systems. In
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order to be of value to the community at large, such a knowledge should be accumulated in a
public domain database that is regularly updated. Results of such categorization can then be
used for testing and for designing efficient on-line error detection and recovery strategies as
well as for fault avoidance.

11.4.1.1 GUARDIAN

We studied the underlying causes of 200 Tandem Product Reports (TPRs) consisting of all
software failures reported by users for a time period in 1991 [Lee93b]. Twenty-one of the
200 TPRs were due to nonsoftware causes. Underlying causes of these failures indicate that
hardware and operational faults sometimes cause failures that look as though they are due to
software faults. Our experience shows that determining whether a failure is due to software
faults is not always straightforward. This is partly because of the complexity of the system
and partly because of close interactions between software and hardware platforms in the sys-
tem. In 26 out of the remaining 179 TPRs, analysts believed that the underlying problems
were software faults but had not yet located the faults. These are referred to as unidentified
problems.

Table 11.2 shows the results of a fault classification using 153 TPRs whose software causes
were identified. The table shows both the number of TPRs and the number of unique faults.
Differences between the two represent multiple failures due to the same fault. The numbers
inside parentheses show a further subdivision of a fault class.

Table 11.2  Software fault classification in GUARDIAN

| Fault Class | #Faults | #TPRs |
Incorrect computation 3
Data fault 12 21
Data definition fault 3
Missing operation: 20 27
— Uninitialized pointer (6) @)
— Uninitialized nonpointer variable (@) (6)
— Not updating data structure on the occurrence of event (6) )
— Not telling other processes about the occurrence of event | (4) ®))
Side effect of code update 4 5
Unexpected situation: 29 46
— Race/timing problem (14) (18)
— Errors with no defined error handling procedures 4) ®)
— Incorrect parameter or invalid call from user process 3) 7
— Not providing routines to handle legitimate (8) (13)
but rare operational scenarios
Microcode defect 4 8
Other (cause does not fit any of the above class) 10 12
Unable to classify due to insufficient information 15 24
All 100 153

Table 11.2 shows what kinds of faults the developers introduced. In the table, the faults
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were ordered by the difficulty in testing and identifying them. “Incorrect computation” means
an arithmetic overflow or the use of an incorrect arithmetic function (e.g., use of a signed
arithmetic function instead of an unsigned one). “Data fault” means the use of an incorrect
constant or variable. “Data definition fault” means a fault in declaring data or in defining a data
structure. “Missing operation” means that a few lines of source code were omitted. A “side
effect” occurs when not all dependencies between software components are considered when
updating software. “Unexpected situation” refers to cases in which software designers did
not anticipate a potential operational situation and the software does not handle the situation
correctly. Table 11.2 shows that “missing operation” and “unexpected situation” are the most
common causes of TPRs. Additional code inspection and testing efforts can be directed to
such faults.

A high proportion of simple faults, such as incorrect computations or missing operations,
is usually observed in new software, while a high proportion of complex causes, such as
unexpected situations, is usually observed in mature software. The coexistence of a significant
number of simple and complex faults is not surprising, because the measured system is a large
software system consisting of both new and mature components. Further, some customer sites
run earlier versions of software, while other sites run later versions. Yet one would like to see
fewer simple faults. The existence of a significant proportion of simple faults indicates that
there is room for improving the code inspection and testing process.

A software failure due to a newly found fault is referred to as a first occurrence, and a
software failure due to a previously-reported fault is referred to as a recurrence. Out of the 153
TPRs whose underlying software faults were identified, 100 were due to unique faults. Out of
the 100 unique faults, 57 were diagnosed before our measurement period. Therefore, 43 new
software faults were identified during the measurement period. That is, about 72% (110 out
of 153) of the software failures were recurrences of previously-reported faults. Considering
that a quick succession of failures at a site, failures likely to be due to the same fault, is
typically reported in a single TPR, the actual percentage of recurrences can be higher. This
shows that, in environments where a large number of users run the same software, software
development is not the only factor that determines the quality of software. Recurrences can
seriously degrade software dependability in the field. Clearly, the impact of recurrences on
system dependability needs to be modeled and evaluated.

11.4.1.2 MVS

In MVS, software error data, such as the type of error detection (hardware and software),
error symptom, severity, and the results of hardware and software attempts to recover from
the problem, are logged by the system. The error symptoms provided by the system were
grouped into classes of similar errors. The error classes were chosen to reflect commonly
encountered problems. Six classes of errors were defined [Vel84]:

1. Control: indicates the invalid use of control statements and invalid supervisor calls.

2. 1/0 and data management: indicates a problem occurred during I/O management or during
the creation and processing of data sets.

3. Storage management: indicates an error in the storage allocation/deallocation process or in
virtual memory mapping.

4. Storage exceptions: indicates addressing of nonexistent or inaccessible memory locations.

5. Programming exceptions: indicates a program error other than a storage exception.
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6. Timing: indicates a system or operator-detected endless loop, endless wait state, or viola-
tion of system or user-defined time limits.

Table 11.3 shows the percentage distribution of the errors during the measured period. On
the average, the three major error classes are storage management (40%), storage exceptions
(21%), and 1I/O and data management (19%). This result is probably related to the fact that a
major feature of MVS is the multiple virtual storage organization. Storage management and
I/O and data management are high-volume activities critical to the proper operation of the
system. Therefore, one might expect their contributions to errors to be significant.

Table 11.3  Software error classification in MVS (measurement period: 14 months)

| Error Type | Frequency | Fraction (%) |

Control 22 5.5
Timing 29 7.3
I/0 and Data Management 74 18.5
Storage Management 161 40.4
Storage Exceptions 82 20.6
Programming Exceptions 31 7.8

All 399 100.0

11.4.1.3 VMS

Software errors in a VAXcluster system are identified from “bugcheck” reports in the error
log files. All software detected errors were extracted from bugcheck reports and divided into
four types in [Tan92c]:

1. Control: problems involving program flow control or synchronization, for example, “Unex-
pected system service exception,” “Exception while above ASTDEL (Asynchronous Sys-
tem Traps DELivery) or on interrupt stack,” and “Spinlock(s) of higher rank already owned
by CPU.”

2. Memory: problems referring to memory management or usage, for example, “Bad memory
deallocation request size or address,” “Double deallocation of memory block,” “Pagefault
with IPL (Interrupt Priority Level) too high,” and “Kernel stack not valid.”

3. 1/0O: inconsistent conditions detected by I/O management routines, for example, “Inconsis-
tent I/O data base,” “RMS (Record Management Service) has detected an invalid condi-
tion,” “Fatal error detected by VAX port driver,” “Invalid lock identification,” and “Insuffi-
cient nonpaged pool to remaster locks on this system.”

4. Others: other software-detected problems, for example, “Machine check while in kernel
mode,” “Asynchronous write memory failure,” and “Software state not saved during pow-
erfail.”

Table 11.4 shows the frequency for each type of software-detected error for the two VAX-
cluster systems. Nearly 13% of software-detected errors are type “Others,” and almost all
of them belong to VAX2. The VAX2 data showed that most of these errors were “machine
check” (i.e., CPU errors). It seemed that the VAX1 error logs did not include CPU errors in
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the bugcheck category. A careful study of the VAX error logs and discussions with field engi-
neers indicate that different VAX machine models may report the same type of error (in this
case, CPU error) to different classes. Thus, it is necessary to distinguish these errors in the
error classification. Most “Others” errors were judged to be nonsoftware problems.

Table 11.4 Software error classification in VMS (Measurement period: 10 months for VAX1 and 27
months for VAX2)

| Error Type || Frequency (VAX1) | Frequency (VAX2) | Fraction (%), Combined |

Control 71 26 50.0
Memory 8 4 6.2
1/0 16 44 30.9
Others 1 24 12.9

All 96 98 100.0

11.4.2 Error Distributions

Time to error (TTE) and time to failure (TTF) distributions provide the information on error
and failure arrivals. Figure 11.1 shows the empirical TTE or TTF distributions fitted to analytic
functions for the three measured systems. Here, a failure means a processor failure, not a
system failure. An error is defined as a nonstandard condition detected by the system software.
Due to the differences in semantics and logging mechanisms between the measured systems, a
direct comparison of the distributions is not possible. But we can make high level observations
that point to relevant dependability issues.

None of the distributions in Figure 11.1 fit simple exponential functions. The fitting was
tested using the Kolmogorov-Smirnov or Chi-square test at the 5% significance level. This
result conforms to the previous measurements on IBM [Iye85] and DEC [Cas81] machines.
Several reasons for this nonexponential behavior, including the impact of workload, were
documented in [Cas81].

The two-phase hyperexponential distribution provided satisfactory fits for the VAXcluster
software TTE and Tandem software TTF distributions. An attempt to fit the MVS TTE dis-
tribution to a phase-type exponential distribution led to a large number of stages. As a result,
the following multistage gamma distribution was used:

n
F&) = > aigt; o, s0) (11.1)
i=1
where a; > 0,37 a; = 1, and
0 t<s,
g(t;a,s) = (11.2)
ﬁ(t _ S)aflef(tfs) t>s.

It was found that a 5-stage gamma distribution provided a satisfactory fit.
Figure 11.1b and Figure 11.1c show that the measured software TTE and TTF distributions
can be modeled as a probabilistic combination of two exponential random variables, indicating
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Figure 11.1 Empirical software TTE/TTF distributions

that there are two dominant error modes. The higher error rate, Ao, with occurrence probability
aup, captures both the error bursts (multiple errors occurring on the same operating system
within a short period of time) and concurrent errors (multiple errors on different instances of
an operating system within a short period of time) on these systems. The lower error rate, A1,
with occurrence probability aj, captures regular errors and provides an interburst error rate.
Error bursts are also significant in MVS. They are not clearly shown in Figure 11.1a because
each error burst was treated as a single situation, called a multiple error. (The characteristics
of multiple errors and their significance are discussed in Section 11.6.2.)

The above results show that error bursts need to be taken into account in the system design
and modeling. The inclusion of error bursts in a model can cause a stiffness problem which
may require improved solution methods. Error bursts, which are near-coincident problems,
can affect recovery/retry techniques because additional errors can hit the system while it is
recovering from the first error. Hence design tradeoffs between performing a rapid recovery
and a full-scale power-on-self-test (POST) need to be investigated.

Error bursts can also be repeated occurrences of the same software problem or multiple
effects of an intermittent hardware fault on the software. Software error bursts have been
observed in laboratory experiments reported in [Bis88]. This study showed that, if the input
sequences of the software under investigation are correlated (rather than being independent),
one can expect more “bunching” of failures than those predicted using a constant failure rate
assumption. In an operating system, input sequences (user requests) are highly likely to be
correlated. Hence, a defect area can be triggered repeatedly.
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11.4.3 Correlated Software Failures

When multiple instances of an operating system interact in a multicomputer environment, the
issue of correlated failures should be addressed. The data showed that about 10% of software
failures in the VAXcluster and 20% of software failures in the Tandem system occurred on
multiple machines concurrently. To understand these concurrent software failures on different
machines, it is instructive to examine a real case of correlated failures in detail.

Figure 11.2 shows a scenario of correlated software failures. In the figure, Europa, Jupiter,
and Mercury are machine names in the VAXcluster. A dashed line represents that the corre-
sponding machine is in a failure state. At one time, a network error (netl) was reported from
the CI (Computer Interconnect) port on Europa. This resulted in a software failure (softl)
13 seconds later. Twenty-four seconds after the first network error (netl), additional network
errors (net2,net3) were reported on the second machine (Jupiter), which was followed by a
software failure (soft2). The error sequence on Jupiter was repeated (net4,net5,soft3) on the
third machine (Mercury). The three machines experienced software failures concurrently for
45.5 minutes. All three software failures occurred shortly after network errors occurred, so
they are network error related. Further analysis of the data revealed that the network-related
software of the VAX/VMS is a potential software bottleneck in terms of correlated failures.

netl softl reboot
Europa H ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, %
13 sec. 47.83 min.
net2 net3 soft2 reboot
Jupiter _| | | | _ %
! 24 sec. ! 9 sec. ! 10 sec. { 47.33 min.
net4 net5 soft3 reboot
Mercury _| | | Lo ___ H
! 60 sec. ! 78 scc.{ 11 sec.{ 45.5 min. 4 sec.

Note:  softl, soft2, soft3 — Exception while above asynchronous system traps delivery or on interrupt stack.
netl, net3, net5 — Port will be re-started. ~ net2, net4 — Virtual circuit timeout.

Figure 11.2 A scenario of correlated software failures

The higher percentage of correlated software failures in the Tandem system is attributed to
the architectural characteristics of the Tandem system. In the Tandem system, it is possible
that a single software fault causes halts of two processors on which the primary and backup
processes of the faulty software are executing. If the two halted processors control a disk that
includes files needed by other processors on the system, additional software halts can occur on
these processors. (In the Tandem system, a disk can typically be accessed by two processors
via dual-port disk controllers.) This explains why there is a higher percentage of correlated
software failures in the Tandem system.

Note that the above scenario is a multiple component failure situation. A substantial amount
of efforts has been directed at developing general system design principles against correlated
failures. Still, correlated failures exist due to design holes and unmodeled faults. Generally,
correlated failures can stress recovery and break the protection provided by the fault tolerance.
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It has been shown that even a low percentage of correlated failures can have a big impact on
system dependability [Dug92, Tan92a]. Thus, correlated failures cannot be neglected.

11.4.4 Recovery Distributions

In MVS, time to recovery (TTR) is defined as the time difference between the operating
system’s departure from the normal state due to the detection of an error and its subsequent
return to the normal state. The normal state means that no error recovery is pending, i.e.,
all previously-detected errors are resolved by the operating system. In GUARDIAN, TTR
is defined as the time difference between a processor’s going down due to software and its
coming back on-line. VMS shares the definition of TTR with MVS, but the TTR data from
VMS look closer to the GUARDIAN TTR data than the MVS TTR data. This is probably
because VMS logs only serious software errors. About 80% of software errors logged resulted
in a node failure in the measured VAXcluster systems.

Since each system has different recovery procedure and maintenance environment, it is
inappropriate to compare the measured systems in terms of TTR distribution. Our intention
is to understand and discuss the different recovery mechanisms and resulting recovery time
characteristics in the three operating systems.

Figure 11.3a plots a spline-fit for the TTR distribution of multiple software errors in the
MYVS system. A multiple software error is an error burst consisting of different types of soft-
ware errors. The TTR distribution for multiple software errors was studied because these
errors have longer recovery times than other software errors and are more typical in terms
of recovery process (see Table 11.13 in Section 11.6). Our analysis found that a three-phase
hyperexponential function can be used to approximate the distribution, suggesting a multi-
mode recovery process. Because most MVS software errors do not lead to system failures, the
TTR for multiple errors is short, although these errors take the longest time to recover of all
software errors.

Figure 11.3b and Figure 11.3c plot the empirical software TTR distributions for the VAX-
cluster and Tandem systems. Because of their peculiar shapes, the raw distributions are pro-
vided. In the VAXcluster (Figure 11.3b), most of the TTR instances (85%) are less than 15
minutes. This is attributed to those errors recovered by on-line recovery or automatic reboot
without shutdown repair. However, some TTR instances last as long as several hours (the max-
imum is about 6.6 hours). These failures are, in our experience, probably due to a combination
of software and hardware problems. Since the Tandem system does not allow an automatic
recovery from a halt, its TTR distribution (Figure 11.3c) reflects the time to reload and restart
by the operator.

Typically, analytical models assume exponential or constant recovery times. Our results
show that this does not apply universally. None of the three TTR distributions is a simple
exponential. For the MVS system, since the recovery is usually quick, a constant recovery time
assumption may be suitable. For the VAXcluster and Tandem systems, neither exponential
nor constant recovery time can be assumed. More complex multimode functions are needed
to model these TTR distributions.
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Figure 11.3 Empirical software TTR distributions
11.5 EVALUATION OF FAULT TOLERANCE

This section discusses the evaluation of the software fault tolerance achieved by the use of
1) process pairs in the Tandem/GUARDIAN operating system [Lee93b] and 2) recovery rou-
tines in the IBM/MVS operating system [Vel84]. Process pairs are an implementation of
checkpointing and restart, which is a general approach developed in the context of distributed
data management. Recovery routines are an implementation of exception handling.

The evaluation of process pairs focuses on the faults in the system software that cause pro-
cessor failures. The evaluation of recovery routines focuses on software errors occurred in the
system software. Clearly, the two evaluations cover different software fault spaces. As such,
the results in this section should be regarded as what we can achieve by using process pairs
and recovery routines, not as a comparison between the two techniques. Recovery routines
and process pairs are techniques that can be used together.

While the Tandem/GUARDIAN and VAX/VMS operating systems rely on recovery rou-
tines to a certain degree, the data from these systems did not allow us to evaluate their ef-
fectiveness against software faults and errors. Also, the IBM/MVS and VAX/VMS operating
systems do not have constructs for checkpointing and restart.

11.5.1 Evaluation of Process Pairs

It has been observed that process pairs allow the system to tolerate certain software faults
[Gra85, Gra90]. That is, in many processor halts due to software faults, the backup of a failed
primary can continue the execution. This is rather counter-intuitive because the primary and
backup run the same copy of the software. The phenomenon was explained by the existence
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of subtle faults, often referred to as “transient” software faults, that are not exercised again
on a restart of the failed software. Field software faults were not detected during the testing
phase, and many of them could be transient in nature. Since the technique is not explicitly
intended for tolerating software faults, study of field data is essential for understanding the
phenomenon and for measuring the effectiveness of the technique against software faults.
Using human-generated field software failure reports in the Tandem system, [Lee93b] mea-
sured 1) the user-perceived ability of the Tandem system to tolerate faults in its system soft-
ware due to the use of process pairs and 2) the detailed reasons for software fault tolerance.
Recently, attempts have been made to use the transient nature of some software faults for
tolerating such faults in user applications using checkpoint and restart [Hua93, Wan93].

11.5.1.1 MEASURE OF SOFTWARE FAULT TOLERANCE

There were 179 TPRs generated due to software faults during the measured period (see Sec-
tion 11.4.1). Since each TPR reports just one problem, sometimes two TPRs are generated as
a result of a multiple processor halt. There were five such cases, making a total of 174 soft-
ware failures during the measured period. Table 11.5 shows the severity of the 174 software
failures. A single-processor halt implies that the built-in single-failure tolerance of the system
masked the software fault that caused the halt. We aggregated all multiple processor halts into
a single group because, in the Tandem system, a double processor halt can potentially cause
additional processor halts due to the system architecture (see Section 11.4.3). There was one
case in which a software failure occurred in the middle of a system coldload.

Table 11.5 Severity of software failures

| Severity | # Failures |
Single processor halt 138
Multiple processor halt 31
During system coldload 1
Unclear 4
All 174

Here the term software fault tolerance (SFT) refers to the ability to tolerate software faults.
Quantitatively, it was defined as

number of software failures in which a single processor is halted

SFT = (11.3)

total number of software failures

Thus, it represents the user-perceived ability of the system to tolerate faults in its system
software specifically due to the use of process pairs.

Table 11.5 shows that process pairs can provide a significant level of software fault toler-
ance in distributed transaction processing environments. The measure of the software fault
tolerance is 82% (138 out of 169). This measure is based on the reported software failures.
The issue of underreporting was discussed in [Gra90]. The consensus among experienced
Tandem engineers seems to be that about 80% of software failures do not get reported as
TPRs and that most of them are single-processor halts. If that is true, then the software fault
tolerance may be as high as 96%.
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11.5.1.2 OUTAGES DUE TO SOFTWARE

We first focused on the multiple processor halts. For each multiple processor halt, we inves-
tigated the first two processor halts to determine whether the second halt occurred on the
processor executing the backup of the failed primary process. In such cases, we also investi-
gated whether the two processors halted due to the same software fault.

Table 11.6 shows that in 86% (24 out of 28, excluding “unclear” cases) of the multiple
processor halts, the backup of the failed primary process was unable to continue the execution.
In 81% (17 out of 21, excluding “unclear” cases) of these halts, the backup failed due to
the same fault that caused the failure of the primary. In the remaining 19% of the halts, the
processor executing the backup of the failed primary halted due to another fault during job
takeover. While the level of software fault tolerance achieved with process pairs is high, it is
not perfect. As a result, there is a chance that a single software fault in the system software
can manifest itself as a multiple processor halt that the system is not designed against.

Table 11.6 Reasons for multiple processor halts

| Reasons for Multiple Processor Halts | # Failures |
The second halt occurs on the processor executing the 24
backup of the failed primary
— The second halt occurs due to the same a7
fault that halted the primary
— The second halt occurs due to another fault (@)
during job takeover
— Unclear 3)
Not related to process pairs 4
— System hang 1)
— Execution of faulty parallel software )
— Random coincidence of two independent )
faults
— Single-processor halt, but system coldload €))
was necessary for recovery
Unclear (insufficient information in TPR) 3

11.5.1.3 CHARACTERIZATION OF SOFTWARE FAULT TOLERANCE

The information in Table 11.5 poses the question of why the Tandem system loses only one
processor in 82% of software failures and, as a result, tolerates the software faults that cause
these failures. We identified the reasons for software fault tolerance in all single-processor
halts and classified them into several groups. Table 11.7 shows that, in 29% of single-
processor halts, the fault that causes a failure of a primary process is not exercised again
when the backup reexecutes the same task after a takeover. This happens because some soft-
ware faults are exposed on rare situations such as 1) a specific memory state (e.g., running out
of buffer), 2) the occurrence of a single event or a sequence of asynchronous events during a
vulnerable time window (timing), 3) race conditions or concurrent operations among multiple
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processes, or 4) the occurrence of an error. These situations are usually not repeated on the
backup.

Table 11.7 Reasons for software fault tolerance

| Reasons for Software Fault Tolerance | Fraction (%) |

Backup reexecutes the failed task after takeover, but 29
the fault that caused a failure of primary is not exer-
cised by backup

— Memory state “4)

— Timing @)

— Race or concurrency (6)

— Error @)

— Others @)
Backup, after takeover, does not automatically re- 20
execute the failed task
Effect of error latency 5
Fault affects only backup 16
Unidentified problem 19
Unable to classify due to insufficient information 12

The following is a real example of a fault that is exercised only in a specific memory
state. The primary of an I/O process pair requested a buffer to serve a request. Due to the high
activity in the processor executing the primary, the buffer was not available. But, due to a fault,
the buffer management routine returned a “successful” flag, instead of an “unsuccessful” flag.
The primary used the uninitialized buffer pointer, thinking that it was a valid one, and a halt
occurred in the processor running the primary. The backup took over and served the same
request, but the fault was not exercised again because buffer was available in the processor
running the backup.

Table 11.7 also shows that, in 20% of single-processor halts, the backup of a failed primary
process does not serve the failed request after a successful takeover. This is because some
faults are exposed while the primary is handling requests that are important but are not auto-
matically resubmitted to the backup on a failure of the primary. Examples of such requests are
operator commands to reconfigure I/O lines. These requests are not automatically resubmitted
to the backup because they are interactive tasks that can easily be resubmitted by the operator
if a failure occurs. Also, some software faults are exposed while executing system functions
that are important but do not run as process pairs. An example of such system functions is
a utility program for on-line processor performance monitoring. Consider that the response
time on a processor increases. Then the operator would run such a utility program. In this
situation, it is not imperative to run the utility as process pairs, because there is no need to
monitor a processor any longer if the processor fails. If the monitoring processor fails, then the
operator can run the utility on another processor. In this case, the failed task does not survive
the failure. But process pairs allow the other applications on the halted processor to continue
to run. This is not a strict software fault tolerance but a side benefit of using process pairs. If
these failures are excluded, the measure of software fault tolerance becomes 77%.

Another reason for the software fault tolerance is that some software faults cause errors
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that are detected after the service that caused the errors has finished successfully (see “effect
of error latency” in Table 11.7). For example, a process overwrote words in a system data
structure due to an uninitialized pointer when it served a request. The underlying fault was
a missing operation, i.e., not initializing a pointer. The process that caused the error finished
serving the request successfully, which was checkpointed successfully to its backup. (The
error did not affect the service and was not a part of the checkpoint information.) After a while,
another process in the same processor detected the error and asserted a halt. The backups of
these processes continued the executions, but the service that caused the error was not repeated
because the service was already provided. Differences between this case and the first group
listed in Table 11.7 is that the software function that caused the failure of the primary did not
have to be executed again in the backup.

Table 11.7 also shows that 16% of single-processor halts occur due to a failure of a backup
process. This indicates that the software fault tolerance does not come free: the added com-
plexity due to the implementation of process pairs introduces additional software faults in
the system software. The measure of software fault tolerance (77%) estimated above can
be adjusted again to 72% by excluding these failures. All unidentified failures were single-
processor halts. This is understandable because these are due to subtle faults that are very hard
to observe and diagnose. The reason why an unidentified problem caused a single-processor
halt is unknown. Based on their symptoms, we speculate that a significant number of these
were single-processor halts due to the effect of error latency.

11.5.1.4 DISCUSSION

The results in this section have several implications. First, process pairs are not explicitly de-
signed for tolerating software faults. Our results show that a major reason for the measured
software fault tolerance is the loose coupling between processors which results in the backup
execution (the processor state and the sequence of events occurring) being different from the
original execution. This confirms that there is another dimension for achieving software fault
tolerance in distributed environments. The actual level of software fault tolerance achieved by
the use of process pairs will depend on the level of differences between the original and backup
executions. Each processor on a Tandem system has an independent processing environment,
so the system naturally provides such differences. ([Gra85] discussed the advantages of using
checkpointing, as opposed to lock-step operation, in terms of the ability to tolerate software
faults.) The level of software fault tolerance achieved by the use of process pairs will also de-
pend on the proportion of subtle faults in the software that are exercised only in rare processor
states. While process pairs may not provide perfect software fault tolerance, the implementa-
tion of process pairs is not as prohibitively expensive as developing and maintaining multiple
versions of large software programs.

Second, the results indicate that process pairs can also allow the system to tolerate nontran-
sient software faults. This is because software failures can occur while executing important
tasks that are not automatically resubmitted to the backup on a failure of the primary. In this
case, the failed task does not survive, but process pairs allow the other applications on the
failed processor to survive.

Third, it has been observed that short error latency with error confinement within a transac-
tion is desirable [Cri82]. In actual designs, such a strict error confinement might be rather hard
to achieve. In Tandem systems, the unit of error confinement is a processor, not a transaction
[Gra85]. Errors generated by a transaction may be detected by another transaction. Interest-
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ingly, the data show that long error latency, when combined with error propagation across
transactions, sometimes helps the system to tolerate software faults. This result should not be
interpreted as long error latency or error propagation is a desirable characteristic. Rather, it
should be interpreted as a side effect of the system software containing subtle faults.

Finally, an interesting question is: if process pairs are good, are process triples better? Our
results show that process triples may not necessarily be better, since faults that cause double
processor halts with process pairs may cause triple processor halts with process triples.

11.5.2 Evaluation of Recovery Routines

[Vel84] evaluated the effectiveness of recovery routines using error logs collected from an
IBM/MVS operating system. Using job names (at error occurrence) supplied by the system,
three groups of job functions were defined: critical (for system survival), essential (would
degrade but not crash the system), and nonessential (to system survival). Table 11.8 evaluates
the effectiveness of recovery routines in dealing with these jobs. The table shows that retries
occurred on 43% of errors involving critical jobs and for 68% on essential jobs. Importantly,
in over 50% of the cases where system-critical jobs are involved, task termination results.
The task is a module of the critical jobs, and usually system termination (recall that this is
defined as a failure) results. Similar, although slightly improved, figures are found for essential
jobs. This points toward an inadequacy in recovery management, since one would like better
recovery and far fewer task terminations when critical and essential jobs are involved.

Table 11.8 Recovery management

Job Ceriticality and Type of Recovery
Retry | Task Termination | Job Termination | Frequency
% % %
Critical 433 53.0 3.7 402
Essential 68.6 23.5 7.8 51
Nonessential || 24.8 51.9 23.3 592
()
Effectiveness of Recovery Routines
Recovery Failures Failures
Routines | (Recovery Routines | (Recovery routines
Provided Provided) Not Provided)
%o % %o
Critical 65.7 443 80.4
Essential 78.4 20.0 72.7
(b)

Table 11.8 also shows that recovery routines were specified in about 65% of the errors
where critical jobs were involved. In interpreting this table, recall that recovery is possible
even when no recovery routine is provided through the recovery termination manager. The
percentage of failures in cases where recovery routines were specified is 44%, compared to
80% when no recovery routine was specified. This appears to show that recovery routines
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have an effect in improving the system fault tolerance, but there is still considerable room for
improvement. For essential jobs (where we expect degradation in service but not necessarily
a system failure), the percentage of failures where recovery routines are specified drops to
nearly 20%, compared to 72% when no recovery routines are specified. Thus, the recovery
routines are doing a much better job of dealing with essential jobs than with critical jobs. In
fact, one would like to see these figures reversed.

Table 11.9 relates the provision of recovery routines to the specified error classes when
critical jobs are involved. (See Section 11.4.1 for the definition of error classes in MVS.) It is
found that the recovery routines are most effective in dealing with storage management prob-
lems (an important feature of MVS). When no recovery routines are provided, the probability
of a storage management failure is high (81%). The recovery routines are weakest in dealing
with timing errors, I/O and data management errors, and programming exceptions. Thus, it
appears that these are the particularly vulnerable areas of the system where further attention
could be directed. To quantify the above figures, measures of fault tolerance were defined and
evaluated.

Table 11.9  Effectiveness of recovery routines for critical jobs

Error Type Frequency | Recovery | Failures™ Failures™
Routine | (Recovery (Recovery
Provided | Routine Routine
Provided) | Not Provided)
% % %
Control 22 63.6 21.4 100.0*
Timing 29 82.8 100.0 100.0
I/0 and Data Management 74 82.4 90.2 7.7
Storage Management 161 79.5 7.8 81.8
Storage Exceptions 82 18.3 46.7 92.5
Programming Exceptions 31 64.5 80.0 63.6
All 399 65.7 44.3 80.4

* The number of failures due to control errors were statistically insignificant.
** A failure means a job or task termination in critical jobs.

Here, the software fault tolerance (FT) (i.e., the probability of recovery given that a software
error has occurred) is
number of failures

FT =1 — 114
total number of errors ( )

where the number of failures is the number of job/task terminations of critical jobs. This
measure was evaluated for all errors and each error category defined in the operating system.

Table 11.10 presents the system fault tolerance under two conditions. It shows how well the
system handles all problems, i.e., regardless of the type of job in control at the time of error.
It also shows the fault-tolerance measure (FT) when a critical job was in control at the time of
error, to quantify how well the system recovery management handles serious system problems.
The overall system fault tolerance to a software error is found to be 0.88. Table 11.10 shows
that the system is weak in dealing with errors occurring on critical jobs. It is seen that the
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system deals best with storage management and control problems. It is at its weakest in dealing
with timing and exception errors. The figure for I/O and data management errors is rather low.

Table 11.10 Fault tolerance

| Error Type | AllJobs | Critical Jobs |

Control 0.80 0.50
Timing 0.90 0.00
I/0 and Data Management 0.42 0.24
Storage Management 0.89 0.77
Storage Exceptions 0.63 0.16
Programming Exceptions 0.69 0.26

All 0.88 0.43

11.6 MODELING AND ANALYSIS

The previous sections discussed the fault tolerance of operating systems resulting from the
use of process pairs and recovery routines, and basic error characteristics such as TTE and
TTR distributions. This section investigates how all these factors affect system availability
and completion of jobs, using Markov modeling and reward analysis. We build two levels
of models using the data and conduct analyses to quantify the effects of errors and recovery
on service loss and job completion. The low-level modeling focuses on error detection and
recovery inside an operating system, while the high-level modeling deals with distributed sys-
tems in which multiple instances of operating systems interact. The IBM/MVS data are suited
for illustrating the lower-level modeling, while the Tandem/GUARDIAN and VAX/VMS data
are suited for illustrating the higher-level modeling and reward analysis. The two-level mod-
eling and reward analysis not only allows us to evaluate software fault tolerance and software
dependability, it also provides a framework for modeling complex software systems in a hier-
archical fashion.

11.6.1 High-Level Modeling

In distributed environments such as the Tandem and VAXcluster systems, multiple instances
of an operating system are running, and these instances form a single overall software system.
In this subsection, each operating system instance is treated as a software element of the
overall software system, and software fault tolerance is discussed at a high level. The modeling
is illustrated using the Tandem/GUARDIAN and VAX/VMS data.

11.6.1.1 MODEL CONSTRUCTION

We constructed two-dimensional, continuous-time Markov models using the software error
logs from the Tandem and VAXcluster systems. Figure 11.4 shows the model structure. In the
model, the state .S; ; represents that, out of a total of n operating systems, % copies are in an
error state, j copies are in a failure state, and (n — 7 — j) copies are running error-free. The
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state transition probabilities were estimated from the measured data. For example, the state
transition probability from state .S; ; to state S; ;11 was obtained from

observed number of transitions from state S; ; to state S; ;11

i = 0 11.5
P9, (0.5+1) observed number of transitions out of state S; ; (11.5)

(=)

Figure 11.4 GUARDIAN and VMS software error/recovery model

11.6.1.2 REWARD FUNCTIONS

Performability models [Mey92] and reward models [Tri92] have been widely used to evalu-
ate performance-related dependability measures in recent years. To evaluate the loss of service
due to software errors, we define two reward functions for the Markov models. The first ap-
plies to a non-single-failure tolerant system, such as the VAXcluster, and the second applies
to a single-failure tolerant system, such as the Tandem system.

A. NSFT (No Single-Failure Tolerance) Reward Function:

In a non-single-failure tolerant system, any recovery time spent on errors or failures results in
degradation. Given a time interval AT, a reward rate for a single operating system is defined
as

r(AT) = W(AT) /| AT, (11.6)

where W (AT) denotes the useful service time provided by the operating system during the
AT and is calculated by

AT in normal state
W(AT) = { AT —cr in error state (11.7)
0 in failure state ,

where c is the number of raw errors occurring in the operating system during AT and 7 is the
mean recovery time for a single error. Thus, one unit of reward is given for each unit of time
when the operating system is in the normal state. In an error state, the reward loss depends
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on the amount of time the operating system spends on error recovery. (If AT is less than c,
W (AT) is set to 0.) In a failure state, the reward is zero.

With the above definition, the reward rate for state S; ; in the model (Figure 11.4) is ob-
tained from .
i-cr+3j

n

rij=1— (11.8)
where ¢ is the average number of errors occurring in an operating system per unit time, when
the operating system is in an error state. Here each operating system failure causes degrada-
tion.

B. SFT (Single-Failure Tolerance) Reward Function:

The Tandem system allows recovery from minor errors and can also tolerate a single operating
system failure without noticeable performance degradation. (During job takeover, application
programs would experience a short delay, which is typically less than 10 seconds.) To describe
the built-in single-failure tolerance, we modify the reward rate (Equation 11.8) as follows:

-1+ cp oo .

1 - = ifj=0o0rj=n
rig = - (11.9)

i-er4(j—1 . .
1 - == f1<j<(n—-1).

Thus the first operating system failure causes no reward loss. For the second and subsequent

failures, the reward loss is proportional to the number of these failures.

11.6.1.3 REWARD ANALYSIS

Given the Markov reward model described above, the expected steady-state reward rate, Y,
can be estimated from [Tri92]

Y= ) rig @y (11.10)
Si, ;€S

where S is the set of valid states in the model and ®; ; is the steady-state occupancy prob-
ability for state S; ;. The steady-state reward rate represents the relative amount of useful
service the system can provide per unit time in the long run, and is a measure of service-
capacity-oriented software availability. The steady-state reward loss rate, (1 — Y'), represents
the relative amount of service lost per unit time due to software errors. If we consider a spe-
cific group of errors in the analysis, the steady-state reward loss quantifies the service loss due
to this group of errors.

Table 11.11 shows the estimated steady-state reward loss due to software, nonsoftware,
and all problems for the Tandem and VAXcluster systems. It is seen that software problems
account for 30% of the service loss due to all problems in the Tandem system, while they ac-
count for 12% of the service loss due to all problems in the VAXcluster system. This indicates
that software is not a dominant source of service loss in the measured VAXcluster system,
while software is a significant source of service loss in the measured Tandem system.

A census of Tandem system availability [Gra90] has shown that, as the reliability of hard-
ware and maintenance improves significantly, software is the major source (62%) of outages
in the Tandem system. It is inappropriate, however, to directly compare our number with
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Table 11.11 Estimated steady-state reward loss

| System [ Measure | Software | Nonsoftware | Total |
1-Y .00007 .00016 .00023
Tandem
Fraction (%) 30.4 69.6 100
1-Y .00077 .00565 .00642
VAXcluster
Fraction (%) 12.0 88.0 100

Gray’s because Gray’s is an aggregate of many systems and ours is a measurement on a sin-
gle system. Besides, the sources of the data and analysis procedures are different. Since our
analysis is based on automatically generated event logs, some nonsoftware problems which
require the replacement of faulty hardware can result in long recoveries and more reward loss.
Also, because of the experimental nature of the measured Tandem system, nonsoftware prob-
lems due to operational or environmental faults may have been exaggerated. An operational
or environmental fault can potentially affect all processors on the system.

11.6.1.4 'WHAT DOES SINGLE-FAILURE TOLERANCE BUY?

The Tandem/GUARDIAN data allows us to evaluate the impact of built-in software fault tol-
erance on system dependability and to relate loss of service to different software components.
We performed reward analysis using the two reward functions defined above (SFT and NSFT).
The reward function defined in Equation 11.9 measures the reward loss under SFT. The re-
ward function defined in Equation 11.8 allows us to determine the reward loss assuming no
SFT. Difference between the two functions provides evaluation of the improvement in service
due to the built-in single-failure tolerance. We evaluated the impact of six groups of halts on
overall system dependability: all software halts, four mutually exclusive subsets of software
halts, and all nonsoftware halts. The four subsets of software halts were formed based on the
processes that were executing prior to the occurrences of software halts.

The first and the second columns of Table 11.12 show the estimated steady-state reward loss
with and without SFT, respectively. The third column of the table shows what the fault toler-
ance buys, i.e., the decrease in reward loss due to the fault tolerance. It is seen that the single-
failure tolerance in the measured system reduced the service loss due to software halts by
approximately 90%. This clearly demonstrates the effectiveness of this fault tolerance mecha-
nism against software failures and corroborates the results obtained in Section 11.5.1. The last
row also shows that the single-failure tolerance reduced the service loss due to all nonsoftware
halts by 92%.

The first column of Table 11.12 shows that nearly 100% of the service loss due to software
halts with SFT was caused by the halts that occurred while the memory manager or an in-
terrupt handler was executing. This indicates that some of these halts affected more than one
operating system at the same time, while the rest of the software halts affected a single operat-
ing system. The software halts under interrupt handlers can occur for three reasons. First, they
can occur due to bugs in interrupt handlers. Secondly, some problems are always detected
during interrupt handling. For example, the failure of the “I’m alive” message protocol, which
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Table 11.12 Estimated steady-state reward loss (Tandem)

With SFT With NSFT ‘What fault tolerance buys:
Halt Group Reward Loss (%) | RewardLoss (%) | (1— %LSFFTT)
SW, all 0.00007 100 0.00062 100 89%
SW, interrupt handlers 0.00003 43 0.00023 37 87%
SW, memory manager 0.00004 57 0.00035 56 89%
SW, all others 0 0 0.00003 5 100%
SW, unknown 0 0 0.00001 2 100%
Non-SW, all 0.00016 0.00205 92%

SW = Software halts

is a timeout in sending or receiving the “I’m alive” message, is detected at clock interrupt.
Thirdly, sometimes an interrupt handler is called after a problem is detected by other routines.
The software halts under the memory manager can occur due to bugs in memory management
software or due to illegal requests from other processes.

11.6.2 Low-Level Modeling

This subsection discusses a low-level model that describes error detection and recovery inside
an operating system. The model is illustrated using the IBM/MVS data. In the MVS operating
system, when a program is abnormally interrupted due to an error, the supervisor routine gets
control. If the problem is such that further processing can degrade the system or destroy data,
the supervisor routine gives control to Recovery Termination Manager (RTM), an operating
system module responsible for error and recovery management. If a recovery routine is avail-
able for the interrupted program, the RTM gives control to this routine before it terminates the
program.

More than one recovery routine can be specified for the same program. If the current re-
covery routine is unable to restore a valid state, the RTM can give control to another recovery
routine, if available. This process is called percolation. The percolation process ends if either
a routine issues a valid retry request or no more recovery routines are available. In the latter
case, the executing program and its related subtasks are terminated. An error recovery can
result in the following four situations:

e Resume Operation (Resume Op): The system successfully recovers from the error and
returns control to the interrupted program.

e Task Termination (Task Term): The program and its related subtasks are terminated, but
the system does not fail.

e Job Termination (Job Term): The job in control at the time of the error is aborted.

e System Damage (System Failure): The job or task that was terminated is critical for system
operation. As a result of the termination, a system failure occurs.

11.6.2.1 MODEL CONSTRUCTION

Using the collected error and recovery data, we constructed a semi-Markov model that pro-
vides a complete view of the measured MVS operating system from error detection to re-
covery. The states of the model consists of eight types of error states (see Table 11.13) and
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four states resulting from error recoveries. Figure 11.5 shows the model. The Normal state
represents that the operating system is running error-free. The transition probabilities were
estimated from the measured data using Equation 11.5. Note that the System Failure state is
not shown in the figure. This is because the occurrence of system failure was rare, and the
number of observed system failures was statistically insignificant.

Figure 11.5 MVS Software error/recovery model

Table 11.13 shows the waiting time characteristics of the normal and error states in the
model. The waiting time for a state is the time the system spends in that state before making
a transition. In the table, a multiple software error is defined as an error burst consisting of
more than one type of software error. Table 11.13 shows that the duration of a single error
is typically in the range of 20 to 40 seconds, except for DLCK (deadlock), OTHR (others),
and MULT (multiple error). The average recovery time from a program exception is twice as
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long as that from a control error (21 seconds versus 42 seconds). This is probably due to the
extensive software involvement in recovering from program exceptions. Table 11.13 clearly
highlights the importance of incorporating multiple errors into a system model. The average
duration of a multiple error is at least four times longer than that of any type of single error.

Table 11.13 Waiting time

State # Observations | Mean Waiting | Standard

Time (Sec.) Deviation
Normal (Error-Free) 2757 10461.33 32735.04
CTRL (Control Error) 213 21.92 84.21
DLCK (Deadlock) 23 4.72 22.61
I/0 (I/0 & Data Management Error) 1448 25.05 77.62
PE (Program Exception) 65 42.23 92.98
SE (Storage or Address Exception) 149 36.82 79.59
SM (Storage Management Error) 313 33.40 95.01
OTHR (Other Type) 66 1.86 12.98
MULT (Multiple Software Error) 481 175.59 252.79

An error recovery can be as simple as a retry or as complex as requiring several percolations
before a successful retry. The problem can also be such that no retry or percolation is possible.
Figure 11.5 shows that about 83.1% of all retries are successful. The figure also shows that
the operating system attempts to recover from 93.5% of I/O and data management errors
and 78.4% of control related errors by retries. These observations indicate that most I/O and
control related errors are relatively easy to recover from, compared to the other types of errors
such as deadlock and storage errors. Also note that “No Percolation” occurs only in recovering
from storage management errors. This indicates that storage management errors are more
complicated than the other types of errors. The problem can also be such that no retry or
percolation is possible.

11.6.2.2 MODEL EVALUATION

The dynamic behavior of the modeled operating system can be described by various proba-
bilities. Given the irreducible semi-Markov model of Figure 11.5, the following steady-state
probabilities were evaluated. The derivations of these measures are given in [How71].

e Transition probability (7;): given that the system is now making a transition, the probability
that the transition is to state j.

e Occupancy probability (®;): at any point in time the probability that the system occupies
state 7.

e Mean recurrence time (©;): mean recurrence time of state j.

The occupancy probability of the normal state can be viewed as the operating system
availability without degradation. The state transition probability, on the other hand, charac-
terizes error detection and recovery processes in the operating system. Table 11.14(a) lists
the state transition probabilities and occupancy probabilities for the normal and error states.
Table 11.14(b) lists the state transition probabilities and the mean recurrence times of the
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recovery and result states. A dashed line in the table indicates a negligible value (less than
0.00001).

Table 11.14  Error/recovery model characteristics

Normal Error State
Measure | State |[CTRL [DLCK | VO | PE | SE | SM [ OTHR | MULT
7 (%) 24.74 1.91 0.20 12.99 0.60 1.34 2.81 0.57 4.31
D (%) 99.50 0.016 — 0.125 | 0.0098 | 0.0189 | 0.036 — 0.291
(2)
Recovery State Resultant State
Measure || Retry | Percolation | No Percolation || Resume Op [ Task Term | Job Term
7 (%) 17.04 8.45 0.30 14.14 7.12 3.48
O(hr.) 4.25 8.55 241.43 5.11 10.16 20.74
(b)

Table 11.14(a) shows that the occupancy probability of the normal state in the model is
0.995. This indicates that in 99.5% of the time the operating system is running error-free. In
the other 0.5% of time the operating system is in the error or recovery states. In more than
half of the error and recovery time (i.e., 0.29% out of 0.5%), the operating system is in the
multiple error state. An early study of the MVS error/recovery estimated that the average
reward rate for the software error/recovery state is 0.2736 [Hsu88]. Based on this reward rate
and the occupancy probability for the error/recovery state shown in the table (0.005), it can be
estimated that the steady-state reward loss in the modeled MVS is 0.00363.

By solving the model (Figure 11.5), it is found that the operating system makes a transition
every 43.37 minutes. Table 11.14 shows that 24.74% of all transitions made in the model are
to the normal state, 24.73% of them are to error states (obtained by summing all the 7’s for all
error states), 25.79% of them are to recovery states, and 24.74% of them are to result states.
Since a transition occurs every 43 minutes, it can be estimated that, on the average, a software
error is detected every three hours and a successful recovery (i.e., reaching the Resume Op
state) occurs every five hours. This indicates that nearly 43% of all software errors result in
user task/job terminations. Although these terminations do affect the user perceived reliability
and availability, only a few (statistically insignificant number) of them lead to system failures.
This result indicates that recovery routines in MVS are effective in avoiding system failures,
but are not so effective in avoiding user job terminations.

11.7 CONCLUSIONS

In this chapter, we provided data and analysis of the dependability and fault tolerance for
three operating systems: the Tandem/GUARDIAN system, the VAX/VMS system, and the
IBM/MVS system. Measurements were made on these systems for substantial periods to col-
lect software error and recovery data. Basic software error characteristics were investigated via
fault and error classification and via the analysis of error distributions and correlations. Fault
tolerance in operating systems resulting from the use of process pairs and recovery routines
was evaluated. A two-level modeling and reward analysis were used to analyze and evalu-
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ate error and recovery processes inside an operating system and interactions among multiple
instances of an operating system running in a distributed environment.

Process pairs in Tandem systems tolerate about 70% of defects in system software that re-
sult in processor failures. The loose coupling between processors which results in the backup
execution (the processor state and the sequence of events occurring) being different from the
original execution is a major reason for the measured software fault tolerance. The results
indicate that the level of software fault tolerance achieved by the use of process pairs depend
on differences between the original and backup executions and the proportion of subtle faults
in the software.

The measurements in IBM/MVS showed that the system fault tolerance almost doubles
when recovery routines are provided, in comparison to the case where no recovery routines
are available. However, even when recovery routines are provided, there is almost a 50%
chance of system failure when critical system jobs are involved. The system recovery routines
are most effective in handling storage management problems (an important feature of MVS).
Timing, I/O and data management, and exceptions are the main problem areas. The overall
system availability is very high (0.995). From the user perspective, however, this is not quite
s0, since more than 40% of all software errors lead to user job/task termination. The above
results show that a combination of recovery routines and process pairs—first try recovery
routines to see if the failed process can be recovered locally and then switch over to the
backup when the recovery routine fails— can be a viable approach for tolerating software
faults.

Software errors tend to occur in bursts on all measured systems. Software TTE distribu-
tions obtained from the data are not simple exponentials. Both the VAXcluster and Tandem
data demonstrated that software TTE distributions can be modeled by a two-phase hyperex-
ponential random variable: a lower rate error pattern that characterizes regular errors, and a
higher rate error pattern that characterizes error bursts and concurrent errors on multiple ma-
chines. The investigation of error correlations found that about 10% of software failures in the
VAXcluster and 20% of software halts in the Tandem system occurs concurrently on multiple
machines. It is suspected that the network-related software in the VAXcluster is a software
reliability bottleneck, in terms of correlated failures.

It should be emphasized that the results of this study should not be interpreted as a di-
rect comparison among the three measured operating systems, but rather an illustration of the
proposed methodology. Differences in operating system architectures, instrumentation condi-
tions, measurement periods, and operational environments make a direct comparison impossi-
ble. It is suggested that more measurements and analyses be conducted in a manner proposed
here so that a wide range of information on software fault tolerance in computer operating
systems is available.
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